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TEST GENERATION FOR MICROPROCESSORS

Satish Mukund Thatte, Ph.D.
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The goa. of this thesis is to develop test generation pro-
cedures for test..ug nicroprocessors in a user environment. Classical
fault detect:ion methods based on the gate and flip-flop level or on the
state diagram ievel description of microprocessors are not suitable for
test generation. The problem is further compounded by availability of a
large variety of microprocessors. They differ widely in their organiza-
tion, instruction repertoire, addressing modes, data storage and
manipulation facilities, etc. In this thesis, a general graph-theoretic
model for microprocessors is developed at the register transfer level.
Any microprocessor can be easily modeled using information only about the
instruction set and the functions performed by it. This informatiom is
easily available in the user's manual. A fault model is developed on a
functional level quite independent of the implementation details. The

effects of faults in the fault model arz investigated at the level of the

graph-theoretic model. Test generation procedures are proposed which take

the microprocessor organization and the instruction set as parameters and
generate tests to detect all the faults in the fault model. The complexity
of the test sequences measured in terms of the number of instructions is
given. OQur effort in generating tests for a real microprocessor and

evaluating their fault coverage is described.
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1. INTRODUCTION

1.1. Description of the Problem

Microprocessors constitute a very high percentage of today's
large scale integrated (LSI) circuits. The number of microprocessor-
based digital systems is expanding rapidly. This has given rise to an
acute need for sound theoretical tools to develop efficient, thorough
and cost-effective test programs to detect faults in microprocessors at
all levels: at the component level during fabrication and before
encapsulation, at the chip level before incorporating the microprocessor
into a system, and at the system level in the field. These levels

have their own testing requirements and constraints on test development

and application.

Manufacturers of microprocessors are interested in testing
various components and devices on the microprocessor chip during its
fabrication for DC parametric behavior (such as power consumption, noise
sensitivity, fanin and fanout capability, etc.) as well as dynmamic
timing problems, etc. Both manufacturers and users are interested in
testing microprocessors at the chip level for its correct functional
operation at the rated speed. Finally, users and system designers are
interested in ensuring that the microprocessor in the system (as well
as the rest of the system) is functioning correctly. Classical fault
detection methods such as the D-algorithm [RBSc67] used for the chip
and system level testing are employed to detect logical faults defined

at a low level such as a line stuck-at-one or stuck-at-zero [CMMe70]

and [BrFr76]. These faults are associated with lines intercomnnecting
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gates and flip-flops. For microprocessors which contain thousands of

gates, flip-flops and interconnections, classical methods must consider

a very large number of faults making test generation extremely
complicated.

Qur approach associates faults with various functions of the !
microprocessor (defined at a suitably higher level), such as the
register decoding function, instruction decoding and control functionm,
data storage function, etc. We give some examples of faults in micro-
processors which we are interested in detecting.

"

Example 1.1: When the instruction '"Load register Rl is

executed, register R, is loaded instead of register R This may happen

2 1’
due to a faulty register decoding function. The instruction "Interrupt
enable" correctly enables the interrupt, but at the same time the
accumulator is cleared. This can be attributed to a fault in the instruc-
tion decoding and control function. The instruction '"Add the contents

of register R, to the contents of the accumulator,” is not correctly

1
executed for a few operands due to faults in the arithmetic and logic (ALU)
unit. We associate these faults with the data manipulation functionm.
A register may fail to store certain data patterns. This fault is
associated with the data storage function. =
Another important reason motivating our approach of considering
faults at a functional level is the constraint imposed on testing micro-
processors in a user environment: the test programs need to be generated

withcut knowing the implementation details of the chip at the gate and

flir-flop level. The only source of information which is readily
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available is the typical user's manual detailing the instruction set and

describing the architecture of the microprocessor. Using this information
it is easier to define the functional behavior of a microprocessor and
associate faults with the functions as illustrated in Example 1l.1.

In tnis thesis we are concerned with formulating a sound
theoretical foundation for test program generation for testing micro-
processors in a user environment, particularly at the chip level. We are
interested only in génerating deterministic tests to detect permanent
faults which give rise to faulty functional behavior as described in
Example 1.1. We will not discuss testing issues related with dynamic timing
problems, faulty DC parametric behavior or manufacturing or design
processes. For these aspects readers are referred to [TEST75]. Of course,
the 'solution' that proposes the execution of each instruction for all
possible operands and in every possible sequence for testing microprocessors
is really not a solution. It only serves the purpose of dramatically
pointing out how difficult the problem really is.

We assume that the extermal tester monitors all the input and
output pins of the microprocessor. 1In particular, the status pins and
the data and address buses of the microprocessor are continually checked.
Testing is stopped on the detection of any fault, (may or may not be in
real time) since we are not interested in fault location on a chip. The
tester and the extermal memory which contains the instructions executed
by the microprocessor are assumed to be fault free. Various sophisticated
testers which are commercially available do satisfy the requirements
mentioned above. In this thesis . ~ill not discuss the design and

implementation or operation of a tester. For information on testers

i
§
q




readers are referred to [Hust74] and [Ande76].

Sophisticated testers available for testing microprocessor

chips cannot be conveniently used for testing microprocessors incor-
porated in a system in the field. Recognizing this difficulty various o
schemes such as self testing [Ball79], [LiDo79] and tranmsition counting

[Haye76] have been proposed. A notable instrument suitable for field -
testing and diagnosis is the signature analyzer available from the l;‘
Hewlett-Packard Company [HPJO77]. These techniques are aimed at the
ability to test systems in the field without requiring a sophisticated
tester; however, their fault detectiom capability principally hinges on i:,
how thorough the test programs are, again emphasizing the need for good -
test generation procedures. Though the test generation procedures {T
proposed in this thesis assume the presence of a sophisticated tester,

j
we believe that these procedures can be used, with relatively easy (-

modifications, for generating tests suitable for field testing. However,

Lo

more research is required in this area.

1.2. Thesis OQutline

!

The goal of the thesis is to develop test generation procedures bt

for testing microprocescors. These procedures should treat the micro- 4
processor organizz2tion and instruction set és parameters. This is ]
- 4

necessary in view of the fact that today's microprocessors differ widely Q
!

in their organization, instruction repertoire, addressing modes, data h
3

storage and manipulation facilities, etc. B!

In Figure 1.1 the thesis outline is schematically illustrated.

In the beginning of Chapter 2 we survey various models and methods of
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test generation published in literature. Since none of them is suitable
cor testing microprocessors, we first develop a general graph-theoretic
tode . I0r misroprocessors at the register transfer level. Any micro-
.r3s0r 2an be ezasily modeled on the proposed lines using information
im.3t the instruction set and the functions performed by it.
.nzormation is easily available in a typical user's manual.) This
w> 35 to treat the microprocessor organization and the instruction
:» rarmmeters of the test generation procedures. We will illustrate
-5 Zenerate the graph-theoretic model for a small example microprocessor.
Functional level fault models capable of describing faulty
dsenavior at a higher level are presented in Chapter 3. These models are
juite independent of implementation details of a microprocessor. We will
investigate the effects of these faults on the graph-theoretic model of a
microprocessor. In Chapter 4 we will present test generation procedures
to detect faults in the fault models and prove their fault coverage. The
generation of the test sequence will be illustrated for the example
microprocessor. The generated test sequences comprise valid machine
instructions which are assembled to produce test patterns. This may be
contrasted with the classical methods which may generate bit vectors that
do not correspond to any instruction.
Chapter 5 discusses the complexity of the test sequences measured
in terms of the number of instructions present in these sequences. Chapter 6
reports on the feasibility of our approach. We will describe our effort in
generating tests for a real microprocessor. The results were quite

encouraging. Finally, in Chapter 7, we summarize the thesis and suggest

topics for future research.
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2. A& MODEL FOR MICROPROCESSORS

Any rigorous exercise of generating tests for fault detection
in a digital system should consist of three activities:
1. Constructing a model at a suitable level for describing the
behavior of the digital system.
2. Developing a fault model ¢o define the scope of allowable
éaults in the system. A good fault model is usually found
as a result of a trade-off between the need to account for
most of the faults commonly observed in the system and the
need to be able to keep the complexity of test genmeration
low, and the length of tests short. The nature of the fault
model is usually influenced by the model used to describe the
system as illustrated in Section 2.1 below.
3. Generating tests to detect a:l the faults in the fault model.
Microprocessor testing practised in industry seems to be based
on ad hoc techniques such as '"testing" each instruction for many operands,
"exercising' various modules in the microprocessor (such as the ALU, shifter,
registers, indexing hardware), or running an application program. A |
typical example based on such ad hoc techmiques is [ChMc76]. A good
tutorial survey of testing methods and tools used in industry can be found
in {Feew78]. Other sources of information describing testing strategies
practised in industry are the digests of the annual Semiconductor Test
Symposiums sponsored by the IEEE Computer Society [TEST75]. These tech-
niques are not based on a general model for microprocessors. Moreover,
they do not consider any specific fault model. Therefore, the technique

followed for testing one microprocessor may be difficult to extend to




other microprocessors having different architectures. It is also very
difficult to know what faults can or cannot be detected using these
techniques.

We now briefly review various models used in the literature for

describing digital systems. We will comment on *“heir applicability for
modeling microprocessors for the purpose of test generatiom, particularly

in a user environment. 1

2.1. Review of Previous Models

] At the lowest level of the modeling spectrum, models are based
* on the gate and flip-flop level description of a digital system in order o

- to describe its logic behavior. Most of the classical work on fault

diagnosis uses these models. At the highest level of the spectrum, 3
models are based on the so-called "black box'" description of the system;

truth tables are used to describe a combinational circuit and state tables

are employed for describing a sequential circuit. As described below, both
of these extremes are unsuitable for modeling microprocessors for the i

purpose of generating tests for them.

2.1.1. Gate and Flip-Flop Level Model

The system is described by a logic diagram consisting of gates
and flip-flops. Thus gates and flip-flops are recognized as primitive
elements. This model usually supports low-level fault models such as a
line stuck-at-one or stuck-at-zero model, which associates faults with
lines interconnecting gates and flip-flops {CMMe70] and [BrFr76]. These
models were used to test and diagnose digital computers designed with

discrete components and with a knowledge of the detailed logic description




[Mann66]. For an excellent annotated bibliography on this topic, readers
are referred to [Scol72].

These models are not very useful for generating tests for LSI
circuits such as microprocessors which contain a very large number of
gates, flip-flops, and interconnections and which therefore require an
enormous amount of computation to generate comprehensive test sets. In,
addition, the required gate and flip-flop level description is usually not

available to microprocessor test designers working in a user environment.

2.1.2. State Diagram Model

This model is based on the state diagram description of the
system, giving its output and the next state for any input and present
state. The system is viewed as a black box and all the implementation
details are ignored. Several test methods have been proposed [Koha70] based
on automata identification experiments. Though this model supports a very
general fault model, the length of the test sequence generated grows
exponentially with the number of inputs and states. This restricts the
use of the method only to toy systems having a very small number of inputs

and states and rules out its applicability to microprocessors.

2.1.3. Module Level Model

This model views a digital system as a network of interconnected
modules such as the ALU, register file, multiplexers, demultiplexers,
shifters, control unit, etc. Thus the primitive elements are these
higher level modules instead of gates and flip-flops.

The problem is to generate tests for the entire system using

the available tests for individual modules. This problem as stated above
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is an extremely difficult and unsolved problem [Powe69] and [BaKi76],
though in [BaKi76] methods are given to generate tests for purely combi-
national systems with some hardware modifications. This model is also
not very promising at its present state of research for generating tests
for microprocessors because microprocessors also contain sequential logic
and no hardware modification is possible in an existing microprocessor

chip.

2.1.4. The Robach-Saucier Model

In view of the difficulties pointed out in the previous sectioms,
Robach and Saucier [RoSa75] and [RoSa78] proposed the following model
for generating tests for control units of digital systems. Every system
can be decomposed into two subsystems, the control and operative parts,
as shown in Figure 2.1(a). The control part is characterized by a repre-
sentation matrix M as shown in Figure 2.1(b). It has n rows corresponding

3 to the set of elementary commands C = [cl,c ..,cn}, and m columns corre-

277
sponding to the set of control states {Ql,QZ,...,Qm?, such that mij =1,

if the state Qj activates the command cis and m, , 0 otherwise. The

1]

operative part can be considered to be made up of a set of independent

Y AT PP 2 -

functional units. The set of commands C is sent to one or more functiomal 1
units.

The diagnosis of the control part is performed through the
operative part which is assumed fault free. The system is capable of
performing a set of "algorithms." For these algorithms, the functioning

of the control part is represented by a flow-chart as shown in Figure 2.1{(c)

where the nodes are the different control states of the considered




Start Stop, Error Signals
—* cControl Part [ (Z) Status Signals

-
Control Comuands () (X) Instructions,
Condition Codes

Operands (P):.{> Operative Part —>(2') Results

(a). A general model for a system.

-
Q. @ Y o
¢y 0 1 0 0
<, 0 0 0 0
cq 1 0 0 1
c 0 0 0 1
n

(b). Representation matrix M.

EP-5§485

(¢). Control representation for three algorithms Al’ A2, and A3

Figure 2.1. The Robach-Saucier Model.
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algorithms, and the edges represent the different possible transitions
between these states; the edges are labeled with the transition conditionms
(predicates).

A test of the control unit consists of complete identification
of the states (distinguishability of every state from all other states,
and checking the commands generated by each state through each functional
unit), and verfication of sequences. The fault model allows commands to
be abnormally activated or abnormally inactive. Thus this model considers
basic control commands and control states as primitive elements rather
than gates and flip-flops generating these commands. ‘

This approach runs into two problems when applied for generating
tests for microprocessors. First, the required information about the
details of control states, basic control commands emitted during a state,
and flow-charts for algorithms (i.e., each instruction of the microprocessor)

may not be available to a test designer working in a user environment.

This problem perhaps could be alleviated by formulating the control states
and commands at a higher level. Even then, the method faces a second
problem; as shown in Figure 2.1(a), it is assumed that the operands

(denoted by P) required for the functional units are directly available,

and the results (denoted by Z') produced by the functional units are
directly observable (possibly with some time delay). On the other hand, in
the case of microprocessors a sequence of instructions needs to be executed,
in general, to provide proper operands to a functional unit (or to store
data in a register) and to read out the result of an operation performed

by it (or to read out the contents of a register). For example, consider an

""Add" instruction which adds the contents of an accumulator and a
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scratch-pad register and stores the result in the accumulator. A 'Load
accurmulator" instruction is needed to load an operand in the accumulator,
while two instructions may be required to store an operand in the scratch-

pad register: the first to load a general purpose register and the second

to transfer the contents from the register to the scratch-pad register.
Similarly the accumulator can be read out only by executing the ''Store
accumulator" instruction.

Though the Robach-Saucier approach is a step in the right direction

for testing certain digital systems where the assumptions made in their

—— eows owmd N OER N BB =S

model are valid, it appears that the limited observability and controllability

of internal registers and logic of microprocessors pose a very difficult

—

. problem in extending the approach to microprocessor testing.

2.1.5. The Thatte-Abraham Model

A methodology for test generation based on a model for a

restricted but "typical' microprocessor organization and instruction set

was proposed by Thatte and Abraham [ThAb78]. The model considers an
organization for the data processing section of microprocessors shown in

Figure 2.2 and allows only limited but commonly observed types of instruc-

N tions, such as instructions performing information transfers between the
v main memory and level 1 registers, instructions performing various ALU

operations, instructions performing informatiom transfers among level 1
;; registers, between level 1 and 2 registers, and among level 2 registers.

The fault model takes into account faults associated with

Wogr

] registers, ALU, buses, and control section such as incorrect decoding of

instructions, missing and extraneous control commands, etc. A drawback
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of this model is that it cannot generate tests for different microprocessor
organizations and instruction sets, i.e., it fails to treat the micro-

processor architecture as a parameter of test generatiom.

N,

2.2. A New Model for Microprocessors

In the light of the discussion in Sectiomns 2.1.1 through 2.1.5,

we summarize various. requirements for a model suitable for generating
tests for microprocessors.

1. The model should be based on a functional description defined
at a suitably higher level such as the register transfer level. We will
define the model in terms of data flow that occurs between various registers
and the main memory during the execution of an instruction. This allows
us to describe the functional behavior of a microprocessor by using
information about the instruction set and functions performed by it.
Since this information is readily available in a typical user's manual,
this model is quite suitable, especially in a user environment.

2. ?he model should be able to treat the microprocessor organization
and instruction set as parameters of the test generation procedure, so
that for a given microprocessor architecture it would be possible to
generate tests. This feature is very desirable as today's microprocessor
differ widely in their organization and instruction set, addressing modes,
etc. This trend is bound to continue with newly emerging and powerful
microprocessors.

3. The model should be able to support a fault model describing
faults in various functional primitives such as the data transfer function,

the data storage function, the instruction decoding and control function, etc.,
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allowing us to describe faulty behavior without knowing the details of
their implementation.

For modeling purposes we partition the instruction repertoire
of the microprocessor into three classes. This classification scheme is
very similar to that proposed by Flynn [Flyn74].

1. Transfer class (denoted by class T):

Instructions of this class perform data transfer between the main
memory and a register (on the microprocessor chip), between an I/0 device

and a register, between registers, and between the main memory locations.

1"

Examples are '"Load accumulator," "Transfer register R, to register RZ’” i

1

1/0 instructions, etc.

2. Manipulation class (denoted by class M):

Instructions of this class manipulate the data stored in the main memory

or registers by performing operations like "Shift," "Add," "Or,' '"Decrement,'

ISPy arpe YAt et

"Compare' instruction, etc.

T T

3. Branch class dencted by class B):

Class 3 consists >I a.. those instructions which do not belong to class T

] 1

or M, ¢ 2., "‘ond:ticnal and unconditional branches,'" "Jump to subroutine'

and "Return :Irom sudroutine ‘i.e., instructions associated with program

TP D A A

sequencing:,’ ‘'Iaterrust enable and disable," '"No operation' instruction,
etc.
F The oroposed model is graph-theoretic in nature. Before defining

the model formally, we motivate it by means of an example. We represent

[ registers of the microprocessor by labeled nodes and instructions by

3
?
?
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directed labeled edges where edges represent data® flow during the
fetching and execution of instructions.
Example 2.1: Consider a simple register transfer instructiom

1, transferring the contents of register R, to register R2. The data

1 1

flow involved during the fetching and execution of I, can be repre-

1

sented in a graph as shown in Figure 2.3. Nodes R3 and R4 represent

the instruction register and the program counter, respectively.
The edge from node R4 to OUT represents the transfer of address of

a main memory location containing instruction I, from the program

1

counter to the address register of the main memory. This edge is

labeled Il. The edge from node IN to R

1 represents the transfer of

3

instruction I, from the main memory to the instruction register. This

1

2 . . . , ;
edge is labeled Il' While the instruction transfer is taking place,
the program counter is incremented. The self loop around node R4
represents the function of incrementing the program ccunter. This loop

is also labeled Ii. The edge from node Rl to R2 indicates the transfer

of data stored in register Rl to register R2, i.e., the intended

function of the instruction. This edge is labeled Ii.

takes place before

Notice that
the data flow represented by the edge labeled Ii
that represented by the edges labeled Ii which, in turn, takes place
before that represented by the edge labeled Ii, and so on. Thus the

superscripts on the edge labels indicate a precedence relation in

time.

*
We use data as a generic term referring to the information as well
as its address.
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Example 2.1 points out some improvements that can lead to much

more concise and succinct representation of an instruction: we may

represent that data flow which is involved only during the execution

of the instruction and not during its fetching. Since the data flow
involved during :he fetching of every instruction is the same,

no information is gained by representing it for each instruction.

On the other hand the data flow involved during the execution of an
instruction really characterizes the function performed by the

instruction. Thus only the edge fiom node R, to R2 in Figure 2.3 can

1
be used to represent instruction Il'

We now formalize the model.” A microprocessor is modeled
by a system graph (S-graph). Let R = {Rl, Rys R3,...] denote the
set of registers in the microprocessor. Set R includes the so-called
general purpose registers, accumulators, scratch-pad registers, on-chip
last-in first-out stack, and the program counter. It also includes
index registers, address buffer register, stack pointer, etc., i.e.,
the registers used in various addressing modes. Included also is the
so-called processor status word containing various processor status bits.
Each register Ri is represented by a node (labeled Ri) of the S-graph.
In addition to the nodes representing registers, we incorporate two more
nodes, named "IN" and "OUT" in the S-graph, representing the world
external to the microprocessor, i.e., the main memory and I/0
devices.

Let ¥ = {Il, 12, 13,...} denote the set of instructions. The

execution of instruction Ij causes data flow among a set of registars, and
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between the main memory (or an I/0 device) and registers in some
sequence. The data may or may not be manipulated during the flow. We
can represent the data flow during the execution of any instruction Ij
as follows:

1. There exists a labeled directed edge from node Rp to node Rq’
if data flow occurs from register Rp to register Rq (with or without
manipulation) during the execution of Ij.

2. There exists a labeled directed edge from node IN to node R,
if data flow occurs from the main memory or an I/0 device to register
Rj (with or without manipulation) during the execution of Ij.

3. There exists a labeled directed edge from node Rj to node OUT,
if data flow occurs from register Rj to the main memory (or its address
register) or an I/0 device (with or without manipulation) during the
execution of Ij'

If more than one edge is required to represent the data flow
during the execution of an instruction, the flow may occur in 5
specific sequence. The exact sequence may not be known to test designers
working in a user environment because the sequence depends on the details
of implementation of the microprocessor hardware. However, it is possible
to deduce the precedence relation in time between the components of the
data flow solely on the basis of logical data dependence, independent
of the details of implementation. We indicate the precedence relation
by means of the labels assigned to directed edges as explained below.

Among the set of edges representing the data flow during the

execution of instruction Ij’ two edges are labeled I? and I?, where p < q




.
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and p and q are smallest such positive integers, if and only if the data
flow represented by the edge labeled I? must take place before that
represented by the edge labeled I? in order to preserve the underlying
logical data dependence. Two edges are assigned the same label I?, if
and only if the corresponding data flows can occur simultaneously given
the necessary number of resources such as buses and functional units, i.e.,
the required hardware parallelism exists. In the presence of some
limitation on hardware resources, the data flow represented by these two
edges may occur in either of the two possible sequences depending on the
details of implementation. If only one edge is required to represent the
data flow during the execution of instruction Ij’ it is assigned a label
I}. It must be stated that this elaborate notation is used only for clarity
in illustrating the data flow sequence and is not really necessary to
generate tests.

Example 2.2: Figure 2.4(a) represents a "Transfer' instruction
Figure 2.4(b)

Il that transfers the contents of register R, to register R

1 27

depicts an "Add" instruction I, which adds the contents of registers R

2

and R2 and stores the result in R

1

5 Note that both edges are labeled I%.

If two separate buses are available to route the contents of registers

R1 and R2

two edges can take place in parallel. If only one bus is available, the

to the ALU simultaneously, the data flow represented by these

contents of either R1 or R2 are transferred to the ALU first and stored in
its latch, followed by the transfer of the contents of the other, and
then the addition takes place. The actual implementation determines which

register is selected first for data transfer.




(a). Il- Transfer instruction (b). IZ- Add instruction

£2.83Q0
(c). 13- Or instruction (d). 14- Rotate left instruction

Figure 2.4. Representation of instructions.
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Figure 2.4(c) shows an "Or" instruction I

3
OR of the contents of registers R1 and R2 and stores the result in Rz. As
explained above, both edges are labeled Ii. Figure 2.4(d) shows a '"Rotate
left" instruction which rotates the contents of register R1 left by
1 bit. |

We now explain how to represent instructiomns which use addressing
modes by these graph-theoretic techniques. A variety of addressing
modes is usually available for instructions for fetching operands from
the main memory and storing results into the main memory. Various
examples of addressing modes are direct, indirect, immediate, indexed,
relative, stack, etc. [GsMc75]. Each addressing mode is characterized by

a sequence of data transfers between registers and the main memory.

Example 2.3: Figure 2.5(a) represents the "Load register Rl
instruction, Il’ using the so-called implied or implicit addressing
[GsMc75] where the data to be loaded is contained in the memory location
next to the ome storing instruction Il, i.e., the address of the operand

is derived by implication. The edge from node R, to OUT represents the

2

transfer of the address of the operand from the program counter (RZ)’
(which is incremented by 1 by this time and points to the word next to the
one storing instruction Il)’ to the main memory address register, and the

edge from IN to R, represents the data transfer from the main memory to

1

register R Figure 2.5(b) represents the "Stack push" instructiomn I, which

1
pushes the contents of R

1 into the memory location (top of the last-in

first-out (LIFO) stack maintained in the main memory) pointed to by the

stack-pointer R, and then increments the stack pointer. The edge from

2

node R, to node OUT in Figure 2.5(b) represents the transfer of data

1

which forms the logical
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Figure 2.5. Representation of addressing modes.
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(to be pushed on the stack) from R1 to the LIFO stack. The RZ-OUT edge

represents the transfer of the address of the top of the stack from R2
(stack pointer) to the address register of the main memory. Both these

edges are labeled I}. The self loop around the node R, represents the

2

stack pointer incrementing function. It is labeled Ig because the stack
pointer must be incremented only after the data is pushed so that it
points to the location on the stack where next data can be pushed.

Figure 2.5(c) shows how to represent a register load instruction

13 using direct addressing [GsMc75). As shown in Figure 2.5(c) the address

of the location storing the operand is fetched from the address field of
instruction 13 into the address buffer register R2 (represented by the

IN-R, edge labeled I;). This éddress is then sent from R, to the address

2 2
register of the main memory (represented by the RZ-OUT edge labeled I%)

and the operand is fetched from the main memory and loaded into Ry

(represented by the IN-R, edge labeled Ig). The register load instruction

1

14 using indirect addressing mode can be represented by incorporating twe
more edges in Figure 2.5(c) (one more edge from node R2 to QUT and omne
more edge from node IN to RZ) as shown in Figure 2.5(d).

Figure 2.5(e) shows the representation of a complicated instruc-

tion I. "Add (Rl)’ (Rz)," where the contents of registers R, and R, denote

5 1 2

addresses of operands. The first operand for this instruction is fetched

from the main memory location pointed to by register R1 and stored in the

data buffer register R3 (accounting for the Rl-OUT edge labeled I; and the

IN-R3 edge labeled Ig). The second operand is fetched from the main

memory location pointed to by register R2 and it is added to the contents

-QUT edge labeled 13

5 the other edge

of register R3 (accounting for the R2

SR DU USRI VOVDPY= W

PR SR
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from IN to R, labeled I4 and the self loop around R3). Finally the result

3 5
of the addition (ready in R3) is stored in the main memory location pointed
to by register R1 (accounting for the other edge from Rl to OUT labeled Ig

and the R3-OUT edge). -
We now illustrate the representation of instructions of
class B.
Example 2.4: Figure 2.6(a) represents a "Jump'" instruction Il.
The edge from the node IN to Rl (representing the program counter)
represents the transfer of the jump address from the main memory to the

program counter. The R,-OUT edge represents the transfer of the jump

1
address from the program counter to the address register of the main memory
achieving the jump in the program sequencing.

Strictly speaking, the R,-OUT edge (indicating the jump in the

1
program sequencing) represents the transfer of the address of a main memory
location for fetching a new instruction. Therefore the Rl-OUT edge really
represents a data flow involved during the fetching of the new instruction.

We take the flexible viewpoint that the data flow denoted by R,-OUT edge

1
could also be considered involved during the execution of the instructions
of class B affecting the regular program sequencing. This viewpoint also
provides a directed edge from the node representing the program counter to
the OUT node, avoiding the awkward situation in which the OUT node would
not be reachable from the node representing the program counter.

Figure 2.6(b) represents a "Jump to sSubroutine" instructiom Iz
where the return address for the subroutine is stored in a local register
called the subroutine register (denoted by RZ)' The program counter is

represented by node R The IN-R, edge represents the transfer of the

1 1

jump address from the main memory to the program counter, and the Rl-R2
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Figure 2.6. Representation of instructions of class B.
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edge represents the transfer 'of the contents of the program counter to the
subroutine register, i.e., saving the return address. The return address i'
must be saved before the jump address is transferred from the main memory

to the program counter. The R.-0OUT edge represents the jump in the program

Ig, Ig indicate the precedence

1

sequencing. The labels of edges Ié,

relations in the data flow.

Instructions causing only conditional changes in the program
sequencing can be suitably represented by tagging instruction labels
. with the appropriate condition code (predicate). For example, Figure 2.6(c)
represents a '"Return from subroutine if bit Z is set" instruction I3.
If Z = 1, the contents of the subroutine register RZ’ are transferred to

the program counter R The RI-OUT edge represents the jump (conditional)

1
in the program flow.

Figure 2.6(d) shows a "Skip if the accumulator equals zero"

instruction 14. The predicate can be denoted by "ACC = 0.'" The node R1

represents the program counter. The self loop around node Rl denotes the
conditional skip, i.e., the program counter is incremented if the accumulator

equals zero. Figure 2.6(e) shows a "No operation" instruction I The

5
Rl-OUT edge represents the transfer of the contents of the program counter
to the address register of the main memory to fetch the next instruction in
the regular program sequencing.

Those instructions of class B which do not change the processor

status word but only change the logic level on some status pins such as

i

""Interrupt enable'" instruction are not represented in the S-graph.
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2.3. An Example Microprocessor

We now illustrate the generation of the S-graph for a small
hypothetical microprocessor. This example will also be used in Chapter 3
to demonstrate the effects of faults on the S-graph, and ia Chapter 4 to

illustrate various test generation procedures. Figure 2.7 shows the block

diagram of this microprocessor. 1t has an accumulator (Rl)’ a general
purpose register (Rz), a scratch-pad register (R3), a program counter (R6)
and a subroutine register (R7) to save the return address of subroutines,
allowing a single level of subroutine nesting. A stack pointer <R4) is
provided which points to the top of a LIFO stack maintained in main memory.
An address buffer register (RS) is provided to store the address of operands.
The ALU is capable of performing ADD, logical AND, SHIFT and COMPLEMENT
operations. The instruction repertoire contains 21 instructions which are
listed in Table 2.1. Though all the architectural features of the example

microprocessor may not be present in any real microprocessor, they have

been carefully chosen to illustrate some of the subtle points involved in

test generation. It may be noticed that instructions I 15, I

1> Lpo I

6’ E
belong to class T, instructions IQ, Ill’ i

I,5 Igs Tygs Tygs Iggs Tigand Iog

112 and 113 constitute class M, while class B contains instructions Ig, IlO’ &
IlA’ 120 and 121.
Example 2.5: The S-graph for the microprccessor shown in
Figure 2.7 is drawn in Figure 2.8. The self loops around Ra, labeled 156
and Lis, represent the stack pointexr incrementing and decrementing functioas,

1
respectively. The self loop around R6’ labeled Ilo.(Rl =0), represents
the program counter incrementing function during the "Skip" instruction IlO’
if the condition "rezister Rl =0" is satisfied. All the other edges of

Figure 2.8 are self-explanatory. —
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Table 2.1. The instruction repertoire of the example microprocessor.

Il - Load register Rl from the main memory using immediate addressing.
I, - Load register R2 from the main memory using immediate addressing.
I3 - Transfer the contents of register Rl to register RZ'

F—

| I, - Add the contents of registers R and R, and store the results

1
in register Rl'

I5 - Transfer the contents of register Rl to register R

3
16 - Transfer the contents of register R3 to register Rl'
] '

I, - Store register R, into the main memory using implied addressing.

1
18 - Store register R, into the main memory using implied addressing.

19 - Jump instruction.

} I - Skip if the contents of register R

10 ] are zero.
’ I11 - Left shift register Rl by one bit.
L 112 - Complement (bit-wise) the contents of register Rl' 3
I13 - Logical AND the contents of registers R1 and R2 and store the 5
] result in register Rl'
114 - No operation instruction. k|
} 115 - Load the stack pointer ’D4) from the main memory using immediate
A addressing.
‘v l 116 - PUSH register R1 on the LIFO stack maintained in the main memory. j
l 117 - Store register R2 into the main memory using direct addressing.
Il8 - POP the top of the LIFO stack and store it in Rl'
' 119 - Load register R2 from the main memory using direct addressing.
IZO - Jump to subroutine (return address is saved in the subroutine
l register R7)~
l 121 - Return from subroutine.
|




Figure 2.8. S-graph of the example microprocessor.
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2.4. Definitions and Notation

Some registers of the microprocessor can be written (loaded with
required data) or read onut {(i.e., its contents can be stored in the main
memory or sent to an I/0 device) by executing an explicit instruction.
Examples of such registers are accumulator and general-purpose registers.
On the other hand, some registers cannot be written or read out by
executing any explicit instruction. For example, the address buffer
register of Figure 2.5(c) can be written as well as '""read out” (on the
address bus)‘only implicitly during the execution of instruction I3-
Similarly, the stack pointer (RZ) of Figure 2.5(b) can be read out
implicitly on the address bus during the execution of instruction 12' Note
that in Figure 2.8 also, the stack pointer (R4) can be read out only

implicitly during the execution of instructions I or 118’ though it is

16

possible to write it explicitly by executing instruction 115' The data
buffer register (R3) of Figure 2.5(e) can be written or read out only
implicitly. The subroutine register (R7) in Figure 2.8 can be read out
only implicitly by executing the '"Return from subroutine' instruction 121-
Finally, the program counter can be written only implicitly during the
execution of an instruction of class B which alters the normal program
sequencing.

We assume that any register can be written (implicitly or
explicitly) as well as read out (implicitly or explicitly) using a sequence
of instructions of class T or using an instruction of class B. This
assumption can be easily justified for current microprocessors [Cush77].

In terms of the S-graph, there exists a path from the IN node to every node

(representing a register) consisting of edges representing instructions of
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class T or class B. Similarly there exiéts a path from every node to the
OUT node consisting of edges representing instructions of class T or
class B.

Transfer mechanisms such as buses are used to transfer data
between registers, functional units, main memory, and 1/0 devices during
the execution of an instruction. Since a test designer working in a
user environment may not know the details of implementation of the transfer
mechanisms, or how they are shared or time-multiplexed among different
data transfers, we "map" a physical transfer mechanism used during the
execution of an instruction onto a set of logical entities called

transfer paths. We illustrate how to perform this mapping by means of

Example 2.6 below. The set of transfer paths associated with instruction
Ij is denoted by T(Ij)' The motivation for presenting the notion of
transfer paths is to be able to develop a fault model for the data transfer
function independent of the actual implementation details of the transfer
mechaﬁiSms.

Example 2.6: With reference to instruction Ih in Figure 2.8,
T(IA) contains three transfer paths, two paths for transferring the
contents of R, and R2 to the ALU and one path for transferring the output

1

of the ALU to Rl' T(I6) contains oanly one transfer path for transferring

the contents of R3 to Rl’ while T<119) contains three transfer paths, one
for transferring data (which is actually the address of an operand) from

the main memory to R_, one for transferring the address from R_. to the

5° 5
address register of the main memory, and the third one to transfer data

from the main memory to Rz- T(IZI) contains two transfer paths, one for

transferring the contents of the subroutine register (R7) to the program
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counter, and the second one for transferring the contente of the program

counter to the address register of the main memory. )

The set of source registers for an instruction Ij is
defined to be that set of registers which provide the operands for
instruction Ij during its execution. This set is denoted by S(Ij).

Similarly, the set of destination registers for am instruction Ij is

defined to be that set of registers which are changed by instruction Ij
during its execution. This set is denoted by D(Ij). Extending this

i = J U,y .
notation further, S(Il, IZ""’ In) S(Il) S(IZ) S(In)
D(Il, IZ""’ In) can be defined analogously. [S(Ij)[ and ID(Ij)[ denote
the cardinality of the corresponding sets.

Example 2.7: In the S-graph of Figure 2.8, S(I,) = {Rl}, S(1,)

= {Rl, Rz}, S(I;) = {R3}, S(1,) = {IN}, S(1,,) = {R7}, etc. Similarly
D(Ly) = {ouT), D(I,) = D(I;;) = D(I,) = {Rl}, D(I,,) = {RQ, ouT}, D(I,,) %
= 1 = = = ]

The set of directed edges denoting an instruction Ij in the

:S-graph is called its edge set and is denoted by E(Ij). READ (Ri) denotes

the shortest_sequence of instructions of class T or class B that is
necessary to read out register Ri (implicitly or explicitly). Similarly
WRITE (Ri) denotes the shortest sequence of instructions of class T or
class B that is necessary to write register Ri (implicitly or explicitly).
lE(Ij)|, |READ (Ri)|’ and IWRITE (Ri)[ denote the cardinality of the
corresponding set or sequences.

Example 2.8: For the S-graph shown in Figure 2.8, READ (Ry) = <I7>,

= ‘./ = = { >
READ (R,) I I7>, READ (Rg) (1 READ (R.) 1,,%, ete.

1777
WRITE (Rl) = \Il/, WRITE (R5) = <Il7>’ WRITE (R3)

’

I

1’ IS\, WRITE (R7)

2. =

= (I

I,o)- Thus, |rREAD (R3)l =2, |WwRITE (R7)l

9’
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We allow ID(Ij)l > 1 only if instruction Ij involvesldata transfer
between the main memory (or an I/0 device) and registers of the micro-
processor during its execution. Thus ID(Ij)I = 1 for all those instructions
which do not involve data transfer between the main memory and some
registers during their execution. We need not consider ID(Ij)] > 1 in the
case of these instructions, because the results of instructions of class M
or T are usually not stored in more than one register. This does not
mean that lD(Ij)I > 1 for every instruction Ij which causes data transfer
to take place between the main memory and registers during its execution.
Thus we have constructed a model based on the data flow involved
during the execution of an instruction satisfying the first requirement
given in Section 2.2. The S-graph depends on the instruction repertoire
and the functions performed by it, i.e., the S-graph reflects the archi-
tecture of the microprocessor. As will be described in Chapter 4, this
feature makes it possible to consider the instruction set and organization
as parameters of the test generation procedures. This satisfies the second
requirement given in Section 2.2. The third requirement is related to the
development of a fault model defined at functional level. This is the

topic of Chapter 3.

2.5. Study of Data Transfers Among Registers

In this section we develop a framework to study how the contents
of registers in the microprocessor change when a sequence of instructions
of class T (called by the generic name T sequence) is executed. Specific

occurrences of the T sequence are denoted by symbols =, = etc.

1’ 32)

A T sequence = is specified by listing its component instructioms, i.e.,

c={1.,,1., ..., I, % I, 1is executed first, followed by I, , and so on.
Jp )2 a1 2
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We denote this by I, < I, < ... < I, . An instruction may occur more

1 I2 In
than once in a T sequence. Since we are considering data transfers
among registers only, we concentrate only on those instructions of class T
which transfer data among registers, and not between the main memory and
registers. Results derived in this section will be used in Section 4.3.3
for generating tests to detect faults in the instruction decoding and

control function, and for proving their fault coverage.

Definition 2.1: Register Ri is l-step transferrable to

register R, under a T sequence 5 =<¢I, , I, , ..., I, », if the contents
J AER D Ia
of Ri before the execution of the sequence become the final contents of

R. at the end of the execution of the sequence. Such a register Ri is

denoted as R}(C’)- !
Lemma 2.1: Given a T sequence @ = (I, , I, , ..., I, Y and
- 31 ds Jn

register Rj’ there exists one and only one register R}(c).
Proof: Follows immediately from Definition 2.1. =
Example 2.9: Consider a hypothetical S-graph shown in Figure

=/ .
2.9. Consider the T sequence O = Tgs Ips Ips I, I, IS> We have
1 _ 1 -
R6(3) = RO’ and Ro(c) R3- C

If the T sequence 0, in the example above, is executed omne
more time the contents of R3 (before the first execution of the T sequence)
would become the final contents of R6' This observation motivates the

next definition.

Definition 2.2: Register Ri is K-step transferrable to

register R, under a T sequence 7 = {I, , I. , ..., I, 7, if the conteants
] Jl J2 n
of Ri before the first execution of the sequence become the final contents

of Rj at the end of the Kth execution of the sequence, wheve K is the
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Figure 2.9. An example illustrating Definitions 2.1 and 2.2.
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smallest such integer. Such a register Ri is denoted as Rg(s).
]

Example 2.10: For the S-graph shown in Figure 2.9,

1> Tps I3o Iy Ig0

If we denote the T-sequence formed by concatenating two

2 .
Ré(c) = R3 under the T sequence ¢ = &IO, I

1

T sequences 01 and 02 as cl-dz, then in the context of Example 2.10,
é(c) = R3. Therefore Definition 2.2 may appear rather
contrieved and artificial because R?

T sequence 7 T . .... 0 is formed by concatenating K copies of T sequence

1 -
R6(c~q) = R

(o) = R}(c .0 . ....T), where the

s. However, as mentioned earlier, results derived in this section will
be used in Section 4.3.3 where test generation procedures are given.
Some of these test generation procedures involve loops containing a
T sequence. When the loop is to be executed K times, it is easier and
more natural to consider the T sequence being executed K times rather
than a long sequence formed by concatenating K copies of the T sequence
being executed omnce.

M denotes the smallest integer such that if any register is
K-step transferrable to a given register Rj under the T sequence
.., I. ), then K S M.

jZ’ In
Lemma 2.2: Given a T sequence I = {I

g={1,,1
i’

., I, , ..., 1,0

b PR P < iq

and a register Rj’ there axists one and only one register Rj(d), where

K S M.

L

Proof: Follows from Definition 2.2.

We are interested in finding the relation between M and

., 1., ..., I.>. (Recall

Jl, 12 In (

that Ij < Ij < ... < Ij .) 1In order to do this we first show how to
1 2 n

n - the number of instructions in o = I

o
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, 1 . .
find Rj(U) under a given T sequence d. Consider a set of instructions

A=1{1,|1; €0 and D(I,
SN Ik

of course, R}(d) = Rj because the execution of the T sequence ¢ does not

) = {Rj}}. I1f set A is found to be empty, then,

change the contents of Rj' Moreover, M = 1. On the other hand, if set A

is found to be nonempty, then choose Ij € A such that there exists no
p
other I € A with I <1Ij, i.e., choose Ij which is executed latest
q p q p
in ¢ but which still belongs to set A. Designate the instruction so

chosen as Izl. Note that Izl is a unique instruction, and it is the last
instruction in ¢ which changes the contents of Rj'
1,
T Ik
is found to be empty, then R%(G) = S(Iz )
1

Consider a set of instructions B, = {I € g, D(I;,) =581, ),
1 Ik 2

. < R
and IJk 121} If set B
because when Iy is executed the contents of S(Izl) are the same as they
1

were before the first instruction in ¢ was executed. (Note that I, transfers
1

the contents of S(Izl) to Rj, and no instruction that occurs after Izl in

o can change the contents of Rj') On the other hand, if set By is found

to be nonempty, then choose Ij € Bl such that there exists no other
P
I. €B, with I, <I.,, i.e., choose I. which is executed latest in O
Jq 1 JP Jq Jp
but which still belongs to set B Designate the instruction so chosen

1
as 1, . Note that I is a unique instruction, and I <I,.
) % oYy
Now consider a set of instructions B, = {I- II- € g, D(I. )

=5(I, ),and I, <I,}. If set B

4 e Th 2

R}(c) = S(Iz ). This is explained as follows: When I, is executed the
2 2

is found to be empty, then

contents of S<Il ) are the same as they were before the first instruction in o
2

was executed. ) transfers the contents of S(Iy ) to S(I, ) and the contents
2 2 1

of S(I, ) do not change between the executions of I; and I, . 1 transfers
1 2 Lty

the contents of S(Iz ) to Rj, and no instruction that occurs after 1, in
1 1
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= can change the contents of Rj' Thus the contents of S(IZ ) before the

2
execution of o become the final contents of Rj at the end of the execution
of . On the other hand, if set B2 is found to be nonempty, then choose

I. € B, such that there exists no other I. € B,, with I. < TI. .

jp 2 g 2 o g
Designate the instruction so choosen as I, - Note that I, is a unique
3

instruction, and I; < Izz.
3
This process of selecting sets A, B.» Byy ooy and instructions

I; Iz R Iz s ... can be continued until set Bi is found to be empty.

1 2 3

Since I, < I, < ... < Iz <1, , and there are n instruction in T, the

i i-1 2 1

process must terminate in at most n steps, i.e., when set Bi = {Ij IIj
k "k

D(Ij ) = S(I}z ), and l'j < I, } is found empty, the process terminates and

k i k i
we get R%(c)

S(Iz ). Of course, S(I)Z )} could be the same as Rj, in
i i

1.

which case M

We call the sequence of instructions <Iz s Iz s . Iz > the
i i-1 1

characteristic sequence associated with the transfer of the contents of

R}(o) to Rj’ and denote it by < Since each instruction in 7. is a unique

1 1
instruction, the characteristic sequence %1 is also a unique sequence.
e 1
Note that o, is a subsequence of ~. Let the initial contents of Rj(c)

(i.e., the contents before the first instruction in 7 is executed) be

denoted by d During the execution of 7, instructions in o, = <Il , I
i

1 1 zi_l’
P ) form a "chain" of instructions transferring the initial contents
1
of R}(d) to R,, i.e., I, transfers data d, from R%(O) to S(I ), T,
j j 2z, 1 j L, 2,
i i-1 i-1
from S(I‘z ) to s(I, )s -.. , finally I, transfers
i-1 i-2 1
data d1 from S(I, ) to Rj' Concisely we may say that during the execution

.3 I

transfers data d1

of =, each instruction in =5 transfers data 1. where dl represents the

1

initial contents of R;(J).




42

Example 2.11: Consider a hypothetical S-graph shown in Figure

2.10. Consider the T sequence T = <IS’ 114, o Iy90 1,5 Igs Igs Ig, 113,

) £ i , . i .
13° IlO’ 112’ IS> Note that instruction 113 is executed twice in

the sequence. Of course, in the S-graph it is represented only once using

14’ 1

the edge from node R4 to node R,. In this example

3
B, = {15, I;,) ; Izz =14 S(Izz) = {r,}.
B, = {16, Iy 113} ; Iz3 =I,4; S(Iy) = {Ra}.
3 +3
By = {15, I,] s I, =1, 8(1,) = (&}
& 4
= 1 . = . =1
B, = {Ig, Iy 14} Ty, =Ty 5@, (r,}.
- . = . = 1
Bg {13} s I, =I5 5(,) {R6,.
6 6
= . = . = 3
By = {12, 114} ; 127 I, ; 5(127) {R7,.
= . = . = { 1
B, = {1,} s I, =I;58,) =R}
8 8
Bg = {4}.
Hence Rl(d) = S(I, ) =R,. Note that I refers to the second
1 18 4 13
occurrence of 113 in o, while Iz refers to its first occurrence. The
5
characteristic sequence o, = <11, I, I3, Ty I Thg, I, 112> which |
is a subsequence of &. O 7

Now we show how to find R?(c) under the T sequence <

(for K S M). If a register which is l-step transferrable to R}(G)

under the T sequence T does not belong to the set {Rj, R}(c)}, it must be




Figure 2.10.

S-graph for Example 2.11.
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2-step transferrable to Rj and is designated as R?(c). On the other hand,
if it belongs to the set {Rj, R}(T)} it is l-step transferrable to Rj’
allowing us to conclude that M = 1. Extending this argument, if a register
which is l-step transferrable to R?(U) under the T sequence T does not
belong to the set {Rj, R}(c), R?(c), ey R?(c)}, it must be (K+l)-step
transferrable to Rj and is designated as R?+1(0). On the other hand,
if it belongs to the set (R, R}(G), R?(G), R?(c), o R?(c)} it is
p-step transferrable to Rj’ where 1 = p = K. (Refer to Definition 2.2.)
In this case we can immediately conclude that M = X.

We denote the characteristic sequence associated with the
transfer of the contents of R?(G) to Rﬁ-l(c) by I for 2 =1 =M.
Concisely we may say that during the execution of @, each imstruction in

ci transfers data di where di represents the initial contents of R;(G),

for 2 £ 1 sM. This discussion leads to the following lemma.

Lemma 2.3: R?(G) is l-step transferrable to Rﬁ_l(c), for
2 Si SM. Some register in the set {Rj, R}(c), R?(d), R R?(c)} is
l-step transferrable to R?(c). O
Definition 2.3: Letc, =¢I, , I, ,I., ...) and
i PR M Y
5, =41, , 1., I, , ...> be two subsequence of a T sequence
] Jp Jq Jr
=<1, ,1,, ..., I.) <, and o, are defined to be disjoint if the
Jl J2 Jn i J
sets {a, b, ¢, ....} and {p, q, r, ...} are disjoint, i.e., fa, b, ¢, ...}
N {P’ q, T, } =9. If {ay b, ¢, }‘ﬁ {P, q, r, } #a’ ci and
cj are not disjoint. O
Definition 2.4: Let ci, -, jk’ ... be subsequences of a T
sequence T. Subsequences in the set f?i, Tj, T ...} are defined to be

mutually disjoint if each pair of subsequences is disjoint. They are
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not mutually disjoint if any pair of subsequences is not disjoint. —
Lemma 2.4: A T sequence ¢ =<I, , I, , ., I. 7 can be
J1 I2 n
partitioned into a set containing at most n mutually disjoint

subsequences. —

Lemma 2.5: Subsequences in the set {31, Ty

- cM} are
mutually disjoint, where I, denotes the characteristic sequence
associated with the transfer of R}(c) to Rj’ and Gi denotes the charac-
teristic sequence associated with the transfer of R?(c) to Rﬁ-l(c),
for 2 =i =M.

Proof: During the execution of ¢, each instruction in =9
transfer data di where di represents the initial contents of R?(c) for
1 =i S$M. Let us assume the contrary, i.e., subsequences in the set
s UM} are not mutually disjoint. Therefore at least one pair
of subsequences, say I and Ty must not be disjoint. 1In this case, at
the end of execution of T, either the contents of Rﬁ-l(c) are different
from di’ or the contents of R?-l(d) are different from dk. This contradicts
the assumption that o is the characteristic sequence associated with the
transfer of R?(c) to Rﬁ-l(s), and 7 is the characteristic sequence

“k
associated with the transfer of R?(d) to R§-1(c). Therefore subsequences

in the set {cl, 32, ce, cw} must be mutaully disjoint. _
Iy
Theorem 2.1: M = n, where n = the number of instructions in
the T sequence ~.

Proof: Follows immediately from Lemmas 2.4 and 2.5. —

Corollarv 2.1: Let the initial contents of registers

b, B2y, . RNy bed, d,, ..., d
J ] ] 1 2

end of Kth execution (1 £ K = M) of the T sequence 7, register Rj will

v’ respectively. Then at the
I\

-
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cortain d(. At the end of ith execution (i > M) of the T sequence o, Rj

will contain some data belonging to the set {dl, d2, ceey dM}.

4

Proof: Follows from Lemma 2.3.

Corollary 2.2: 1If register Rj contains the same data d at

the end of each of i executions of the T sequence ¢ = <Ij s Ij s e Ij Yy
1 2 n

for 1 £ 1 £ n, then at the end of the (n+p)th execution of the T sequence

c, for p 21, Rj will contain the same data d.

Proof: Follows from Corollary 2.1, and M S n. 3

Corollary 2.3: If register Rj contains the same data d at
the end of each of i executions of the T sequence O containing at most
) th .
K-l instructions, for 1 £ i S K-1, then at the end of X  execution of

the T sequence T, Rj will contain the same data d.

Proof: Tollows immediately from Corollary 2.2.




3. FUNCTIONAL LEVEL FAULT MODELS FOR MICROPROCESSORS

In this chapter we present fault models for varicus functions
in a microprocessor in accordance with the third requirement cited in
Section 2.2. We develop fault models which are quite independent of the
implementation details of the microprocessor. We categorize various
functions in a microprocessor into the register decoding function,
instruction decoding and control function, data storage function, data
transfer function, and data manipulation function. We will present a
fault model for each of these functions at a higher level. We will,
however, point out the underlying fault mechanisms in order to clarify the
reasons for choosing the particular models. We will also describe the
effects of these faults at the level of the graph-theoretic model for a

microprocessor presented in Chapter 2.

3.1. Fault Model for the Register Decoding Function

Registers on a microprocessor chip are typically realized as
small random-access memories (RAM) [INTE75]. They could also be realized as
separate registers interconnected by a network of multiplexers, demulti-
plexers and buses. Various instructions use rigisters to fetch operands or
address of operands and to store results of operations. Register decoding
refers to the task of decoding the '"address'" of a register which may be
stored as a specific bit pattern in the instructions involving that
register or which may be generated by the control unit during the execution

of the instructions. We want to develop a fault model for this decoding

function independent of the realization of the decoding mechanism.
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The register decoding function can be modeled as a mapping fD
from ® to R U {#}, where ? denotes a null or nonexistent register. Let
ED(Ri) S R J {63 denote the set of registers which is the image of R,
under the mapping fD. If there is no fault in the register decoding
function we get fD(Ri) = {Ri}, for every Ri € ®. Under a fault, if
fD(Ri) = {®}, whenever register Ri is to be accessed (while executing any
instruction which involves Ri), no register is accessed. Obviously if
2 £ fD(Ri) then fD(Ri) = {?} because fD(Ri) = {Rj, Rk,...,ﬁ} is meaningless.
If fD(Ri) # {®) then whenever Ri is accessed, all the registers in the set
fD(Ri) are accessed. By this we mean, whenever Ri is to be written with
data d, all the registers in fD(Ri) would be written with data d, and
whenever the contents of Ri are to be retrieved or used, the contents
formed by the bit-wise OR or AND function (depending on technology) over
the registers of the set ED(Ri) will be retrieved. Under this fault we
allow ED(Ri> # {Ri1, for every Ri € R,

This situation can be best illustrated by means of a pictorial
representation shown in Figure 3.1. 1In Figure 3.1(a) the mapping fD is
shown under the condition that there is no fault in the register decoding

function. Under this condition, £_ is a one-to-one correspondence from

D
R to R. When there is a fault in the register decoding function fD becomes,
in general, a many-to-many correspondence from R to % U {#). This is
illustrated in Figure 3.1(b).

We now briefly comment on the fault mechanisms responsible for

faults in the register decoding function. Counsider a subset of registers

R' = ® which is realized as a random-access memory on the microprocessor

chip. Due to faults in the address decoder in this memory some registers




——— ——

(a).

(b).
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f  is a one-to-one correspondence from R to R if there is no fault
in the register decoding function.

FP-645%9

fp is a many-to-many correspondence from R to R U {21 1
are faults in the register decoding function.

[a )

there

Figure 3.1. Representation of the mapping f;.
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in R' could be decoded as some other registers in R' [NTAb78]. This can
be adequately modeled by a many-to-many correspondence from R' to

R' U {#). Of course, under this fault a register in R' cannot be decoded
as some other register not in R'.

In order to rule out the possibility of a register R, being

1

decoded as another register R, under a fault, we must know whether R1 and

2

R, belong to different random-access memories realized on the chip, or

2

we must know of the existence of some mechanism (realizing R, and RZ) under

1
which this fault cannot be present, i.e., we need to know the implementation
details. Our desire is to make the fault model as independent as possible
of the actual implementation. Therefore we allow fD to be a many-to-many
correspondence from R to R U {¢} under a fault. We are thus considering
the "worst case' behavior under the register decoding faults.

Alternatively registers could be realized as separate registers
and interconnected with a network of multiplexers, demultiplexers and
buses. A typical situation is shown in Figure 3.2, where it is desired to
l,Rz,...,Rk‘} < R for

transferring its contents to a register to be chosen from another subset

choose one register from a subset of registers Rl =R

of registers RZ = {Rk+1’Rk+2""’Rm1 C R. The task is accomplished by
using a k-to-l multiplexer for choosing a source register from Rl, and a
l-to-(m-k) demultiplexer for selecting a destination register from RZ'
The multiplexer and the demultiplexer receive the addresses of the registers
to be selected from the control unit.

Due to faults in these units the wrong registers may be chosen,

or more than one registers could be chosen. Under some fault in the

control unit, an incorrect register address could be sent to the multiplexer




Address of a Address of @

Source Register Destination Register

from the Control Unit from the Control Unit
7—7‘“—~—\ —

Figure 3.2. A multiplexer-demultiplexer mechanism
for data transfer.
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or demultiplexer resulting into the selection of a wrong register. All
these faults can be adequately modeled by a many-to-many correspondence
from Rl to Rl U {8}, and another many-to-many correspondence from Rz to
Rz U {#}. 1In this particular implementation, a register in Rl may not be
decoded as a register in Rz, and vice-versa. We avoid all these implemen-
tation dependent details by allowing fD to be a many-to-many correspondence
from R to R U {¢7.

At this point one may wonder how a register used to store address

of operands such as R. and R7 (in Figure 2.8), could be decoded as a

5

register used to store operands, such as R, and R,, particularly in the

1
light of the fact that the widths of registers used to store addresses
usually differ from those used to store data. This is quite likely in the
following situation.

All registers-are realized as a RAM array on the microprocessor
chip. Each word of the RAM is 16 bits in width and can be used as a single
register for storing addresses which are 16 bits in width. A single word
can also be used as a pair of registers for storing data which is 8 bits
in width. This is the way registers are implemented on the INTEL 8080
microprocessor [INTE75].

We now extend the notation developed in Chapter 2. fD(D(Ij))
denotes the set of registers formed by making the union of the image sets

of registers in D(Ij) under the mapping fD. fD(S(Ij)) can be analogously

defined. Extending this notation further, fD(D(Il,Iz,...,In))

2s~--:In>)

= ED(D(II)) J fD(D(IZ)) U ... U fD(D(In))' The set fD(S(Il’I

can be defined similarly.
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We now illustrate the effects of faults in the register decoding
function at the level of the S-graph by means of the following example.
Example 3.1: 1In terms of the S-graph of Figure 2.3,
R = {RI,RZ,R3,R4,R3,R6,R7}. If £ (R) = {R;}, register R, will play the
role of the address buffer register R5 during the execution of instructions
and I.,. Thus under I

17 19 17°
contents of register Rl will be changed instead of that of R

R

I will be read out correctly, but the

2

5° If
= 1 . o . .

fD(Rl) {Rz,, when Il is executed R2 will be written instead of Rl'

Moreover, I_, will read out R, instead of Rq' If fD(RZ) = {Rl’ R3}, then I

7 2

will read out Rl * R3, where * denotes the bit-wise AND or OR function

over registers R1 and R3 depending on technology. Similarly when I2 is

executed, both Rl and R3 will be written instead of R2'

If £ (Ry) = {#}, then I

8

5 will not change the contents of any

+
register, and I, will transfer a ONE* or a ZERO' to R1 depending on

6

technology, instead of the contents of R If fD(R7) = {#¢}, the "Jump to

3
subroutine' instruction 120 will correctly execute the jump in the program
sequencing, but will not save the return address into R7. The fault will
show up when the "Return from subroutine' instruction 121 is executed,
because the program sequence will return to the main memory location

whose address is ONE or ZERO depending on technology, as a ONE or a ZERO

will be loaded into the program counter (R6) instead of the contents

of R7-

'ONE denotes a binary vector with each of its bits set to logic 1 and
and having its width equal to that of a register, i.e., ONE = (1l1...1);
similarly ZERO stands for (00...0).
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1f fD(RS) = {R7}, instruction I

20 will be executed correctly,

i.e., the jump to subroutine will occur and the return address will be

correctly saved in R,, but now the correct execution of I will depend

7° 21
on whether 117 or I19 were executed within the subroutine. If they were

executed in the subroutine, due to the fault fD(RS) = {R7}, the subroutine

register R, will be changed instead of the address buffer register R

7

resulting into the loss of the return address saved in R

5!

Thus T will

| 7 21
} i cause the program to branch to some location that equals the address of

operand used in the last instruction I17 or 119 executed within the

subroutine. i

- 3.2. Fault Model for the Instruction Decoding and Control Function

The instruction decoding mechanism is shown as a block diagram
in Figure 3.3. Basically it is a decoder whose inputs are the instruc-
tion opcodes and whose outputs correspond to the control signals that
initiate the execution of instructions. For each valid opcode, one
and only one output of the decoder is activated initiating the execution
of one and only one instructionm.

Under a fault in the instruction decoding and control function,
1 the faulty behavior of the microprocessor can be specified as follows.
When instruction Ij is executed any one of the following can happen:

1. Instead of instruction Ij some other instruction Ik is
# executed. This fault is denoted by f(Ij/Ik)'

2. In addition to instruction Ij’ some other instruction Ik is !
also activated. This fault is denoted by f(Ij/Ij+Ik).

3. No instruction is executed. This fault is denoted by f(Ij/é).
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This fault model is strongly motivated by the fact summarized
in the following theorem.

Theorem 3.1: If a decoder is realized without any reconvergent
fanout then under a single stuck-at fault its behavior can be formulated
independent of its implementation details as follows: for a given valid
input to the decoder, instead of, or in addition to the expected output
some other output is activated, or no output is activated.

Proof: See the Appendix. 0

The assumption of no reconvergent fanout in the instruction
decoding mechanism is quite reasonable as it has n inputs ana as many
as 2" outputs. We would like to allow the faulty behavior stated
above for each instruction of the microprocessor. However, it makes
the test generation procedures extremely complicated. Therefore we
impose two constraints (given below as 4 and 3) on the decoder behavior
under faults in the instruction decoding and control function.

4. 1If faults f(Ij/Ik) or f(Ij/Ij+Ik) are present then instruction

Ik will be correctly executed.

5. 1If faults £(I./I,), £(1./I.+L,) or £(I,/9) are present then
( j k) ( 3714 k) ( j p
faults f(Iq/Ij) or f(Iq/Iq+Ij) cannot be present.
The behavior of a decoder under a single stuck-at fault does not

violate these constraints. This will also be proved in the Appendix. Any

number of instructions could be faulty subject to the set of specifications

1 through 5. As an example, under the fault model, fauits f(Il/I,),
f(I3/I3+Iz), f(I4/Iz) can exist simultaneously, so can f(Il/IZ), f(I3/®),
f(14/16)’ f(Is/IS+i6). Thus, this fault model can account for all single

stuck-at faults in the instruction decoding mechanism.
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In practice, some faults in the instruction decoding and control

function such as f(Ij/Ik) or f(Ij/Ij+Ik) may be readily detected if a

different number of machine cycles are needed to execute instructions Ij

—-—-—-

and Ik’ or different status signals are emitted during their execution
l [ThAb78].
We now illustrate the effects of faults in the instruction E .
i decoding function at the level of the S-graph by means of the following
example.
Example 3.2: 1In terms of the S-graph of Figure 2.8, under fault

f(12/®), register R, will not be written, i.e., its contents remain unchanged.

2
If f(14/16) is present, then the contents of R3 will be transferred to R1
instead of the sum of R1 and R2' Under f(I7/I7+18), the contents of
R, * R, will be read out, where as before, * indicates the bit-wise

1 2
logical OR or AND function depending on techmology. If f(19/19+{3)

is present, the "Jump" instruction 19 will be executed correctly, but at

the same time the contents of R1 will also be transferred to RZ'

Note that the faults in the instruction decoding and control
function cannot be treated as faults in the register decoding functiom.
For example, f(IB/IS) cannot be treated as R2 being decoded as R3 if I8 is g
! executed correctly. Under f(110/121), instead of the "Skip if the contents

of R1 are zero'" instruction the 'Return from subroutine'" instruction is

executed. Under f(I6/I6+I (RESULT1) * (RESULT2) will be transferred

13)’

to Rl’ where RESULT1 and RESULT2 are the results produced by 16 and 113,

respectively, and * indicates the bit-wise logical OR or AND function

between RESULT1 and RESULT2.
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Example 3.3: This example is constructed to show how the result

produced by executing a program in the presence of a multiple fault in

the instruction decoding and control function differs from the one produced
by executing the same program under the fault free condition. A part of
the S-graph of a hypothetical microprocessor is shown in Figure 3.4(a).

I IZ’ 13, I!', 1!, I! are instructions of class T. Note that instruction

2 3

I3 reads out register R3.

Tt s I ' '
of three faults f(Il/Ilfll), -(12/12+Iz), and f(13/13+13) affects the result

1’

We investigate how the simultaneous existence

produced by the microprocessor when it executes the program given in
Figure 3.4(b). Only three instructions in the loop are shown. The loop
control is given in terms of a high level language construct (FOR loop)

only for conciseness and ease of understanding.

Assume that the initial contents of registers Rl’ RQ’ RS’ R6
are ONE, ONE, ONE, and ZERO, respectively. Thus under the fault free
condition, at the end of each of the n iterations of the loop, a ONE is
read out, independent of the value of n.

Under the presence of the multiple fault described above, the

program would correctly read out a ONE at the end of each of the first

three iterations of the loop, but would read out a ZERQ instead of a ONE

at the end of each iteration after that. Therefore the program would not

detect the fault if n = 3. ™

3.3. Fault Model for the Data Storage Function

In this section a fault model for the data storage function is
presented which accounts for the faults in various registers. We allow

any cell of a register to be stuck at 0 or 1, and this fault can occur
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(a). A part of the S-graph of a hypothetical microprocessor.

FOR K< 1 TO n DO

BEGIN
L
. I
! 2
Iy
END

(b). The program considered in Example 3.3.

Figure 3.4. Illustrating Example 3.3.
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with any number of cells of any number of registers. We now illustrate
the effects of faults in the data storage function at the level of the
S-graph by means of the following example.
Example 3.4: 1In terms of the S-graph of Figure 2.8, suppose | -

the first and third bit of register R, are stuck at 1 and O, respectively.

1

Then, it would not be possible to store any data vector whose first and

third bits are 0 and 1, respectively, in register R by executing any ?.

1’
instruction whose destination register is Rl' If the second bit of

register R7 (subroutine register) is stuck at 0, then it would not be

possible to execute the '"Return from subroutine'" instruction I success-~

21

fully if the return address has its second bit equal to 1. Thus under

el e e

a fault in the data storage function some instructions may not be

correctly executed for certain data and address patterns. -

3.4. Fault Model for the Data Transfer Function

In this section a fault model for the data transfer function
is presented which accounts for faults in various transfer paths, i.e.,
buses. Under a fault in the data transfer function for any instruction Ij
1. a line in a transfer path in set T(Ij) can be stuck at 0 or 1,
2. two lines of a transfer path in set T(Ij) can be coupled, i.e.,
they fail to carry different logic values. This can happen due to
metallization shorts or capacitive cou»olings [ThAb78].

We allow any number of transfer paths associated with any number

of instructions to be faulty in this manner. This fault model is very by

general and is also independent of implementation details of transfer

paths. Even though physical transfer mechanisms may be shared between i
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transfer paths in practice, by aliowing each transfer path to be faulty,

we are making the fault model independent of implementation details. i
We now illustrate the effects of faults in the data transfer

function at the level of the S-graph by means of the following example.
Example 3.5: Suppose the transfer path carrying data from the

node R, to the OUT node (i.e., the main memory) in instruction 18 has

2

its second line stuck at 0, then instruction I8 cannot be executed 3

successfully if the data pattern stored in register R2 has its second bit

equal to 1. Suppose the transfer path used to carry the result from the

ALU to register Rl in instruction 14 have its first and second line coupled 3
. such that the resulting logic value present on these two lines really ]

is a logical OR or AND function (depending on technology) of the logic

values that would have been present on these lines, were there no coupling.

Under this fault any ALU result whose first and second bits

'% differ in the logic values will not be successfully transferred to Rl; ?;

if the coupling results in a logical OR function, the first and second v

lines of the transfer path will both carry a logic 1 when they are

supposed to carry a 1 and a O, or a 0 and a 1. Similarly if the coupling

results in a logical AND function, the first and second lines of the
l transfer path will both carry a logic 0 when they are supposed to carry
a land a 0, or a 0 and a 1. Similar faults could be present with the ;
transfer paths used to carry addresses. Thus under a fault in the data A

transfer function some instructions cannot be correctly executed for

certain data and address patterns. -
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3.5. Fault Model for the Data Manipulation Function

The data manipulation function refers to various functional
units such as the ALU, interrupt handling hardware, hardware used for
incrementing (or decrementing) the program counter, stack pointer or
index register, hardware used for computing the address of operands in
various addressing modes such as indexed and relative, etc.

A microprocessor is not a network of arbitrary interconnections
of these functional units. Therefore we need not really worry about
the problems involved in testing a digital system comprised of a network of
such functional units as mentioned in Section 2.1.3. 1In fact, recalling
the discussion of Section 2.4 any register of a microprocessor can be
read or written (explictily or implicitly) using a sequence of instructions
of class T, or using an instruction of class B, i.e., the operands
required for an instruction of class M can be stored in the necessary
registers (or are available in the main memory) and the result produced
by it can be read out from the register where it is stored by using
instructions which do not belong to class M.

We do not propose any specific fault model, per se, for the data
manipulation function because of the wide variety in existing designs for
the ALU and other functional units such as increment or shift logic.

We will assume that complete test sets can be derived for the functional
units for any given fault model. The operands necessary to execute tests
for a given functional unit can be stored in the proper registers by
executing instructions of class T or B only, and they do not require the
use of any other functional unit. Similarly the results of these tests

can be read out by using instructions of class T or B only.

.;_-.‘—-—“-M
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We allow any number of functional units to be faulty at one time.

3.6. Fault Model for Microprocessors

We now propose the fault model for microprocessors based on the
favlt models proposed in Sectioms 3.1 through 3.5. At any given time we
allow the presence of any anumber of faults but only in one function
described above (in Sections 3.1 through 3.5). Note that we are allowing
a very general model for microprocessors (as described in Chapter 2).

In addition, if we allow multiple faults in different functions, the

problem becomes extremely complex. In {ThAb78], a restricted model for
microprocessor was considered, (refer to Section 2.5) allowing multiple
faults in different functions. 1In that case the problem turned out to be

very complex but of manageable proportioms.
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4. TEST GENERATION PROCEDURES

In this chapter we present test generation procedures to

generaté tests for detecting faults covered by the fault models presented

in Sections 3.1 through 3.5. The first step in developing test generation
procedures is to assign labels to the nodes and edges of the S-graph

under consideration by using the labeling algorithm given in Section 4.1.
Test generation procedures for detecting faults in the register decoding
function, instruction decoding and control function, data transfer and
storage function, and data manipulation function are given in Sections 4.2,
4.3, 4.4 and 4.5, respectively. The fault coverage of the tests is also

proved.

U T [ OO e ST

4.1. Algorithm 4.1: The Labeling Algorithm

This algorithm assigns integer labels to nodes and edges. The
label assigned to a node representing register Ri is denoted by £(Ri),
and the label assigned to the edge set E(Ij) representing instruction Ij

is denoted by Z(Ij).

Step 1: Assign a label O to the OUT node.

Step 2: K « O;
WHILE a node remains unlabeled DO
BEGIN
Assign a label K+l to all unlabeled nodes representing
registers whose contents can be transferred (explicitly
or implicitly) to any register whose node is labeled K by
executing a single instruction of class T or B;

KeK+1

END
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Step 3: Assign a label 1 to each edge in the set E(Ij) where Ij is an
instruction that reads out a register (explicitly or implicitly)

during its execution.

Step 4: If Ij is an instruction whose edge set has not been labeled in

step 3 then assign a label (X+l) to each edge in the set E(Ij), ;

where Z(D(Ij)) = K. =

Thus the labeling algorithm first assigns an integer label to

= each node of the S-graph. This label (which is equal to |READ <Ri)| ;
as will be shown in Lemma 4.1) indicates the shortest '"distance'" of that !

node to the OUT node, i.e., the minimum number of instructions of class

> T or B that need to be executed to read out (explicitly or implicitly)

the contents of the register being represented by that node. After

assigning labels to the nodes of the S-graph, the labeling algorithm
assigns labels to the edges representing instructions. 1In step &, each

edge in the set E(Ij) representing instruction Ij is assigned a label

Aty M am. B

K + 1, if the destination register of Ij was assigned a label K in step 1
or 2. Note that in step &4, the edge sets of only those instructions are
labeled which do not cause data transfers from registers of the micro-

processor to the main memory or an 1/0 device during their execution.

For such an instruction Ij’ |D(Ij)| = 1. (Recall the discussion
in Section 2.4.)

On the other hand, the destination set D(Ij) of an instruction
Ij that reads out (explicitly or implicitly) a register during its

execution may contain more than one register. Since the nodes representing

these registers may have different labels, step 4 cannot be applied in this
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case. In this case we ':z: 3tep 3 to assign a label 1 to each edge in the
set E(Ij)- The choice of the label may be explained by the fact that in
this case the OUT node has to be a member of the set D(Ij), and step 1
assigns a label O to the OUT node.

For concise description, we will use the phrase ''register Ri with
label K," if the node representing register Ri is labeled K. Similarly
we will use the phrase "instruction Ij with label K," if the edge set E(Ij)
representing instruction Ij is labeled X. The phrase ""Execute READ (Ri)”
means execute instructions in the READ (Ri) sequence; the phrase "Execute
WRITE (Ri)" can be interpreted in a similar fashion.

Lemma 4.1: a) If #(R;) =K, |READ (R)| =&. b) 1If L) = 1,
Ij reads out (explicitly or implicitly) a register with label 1.

Proof: a) Nodes are labeled in step 2 of the labeling
algorithm. A node is labeled 1 if the register represented by it can be
read out (explicitly or implicitly) by executing a single instruction of
class T or B. A node is labeled 2 if the contents of the register
represented by it can be transferred to a register whose node is labeled 1
by executing a single instruction of class T or B, and the former register
(whose node is labeled 2) cannot be read out by executing a single
instruction of class T or B. Thus a register Ri whose node is labeled 2
can be read out by executing a sequence of instructions of class T or B
containing two instructions and no shorter sequence exists to read it out.
Therefore IREAD (Ri)l = 2. (Recall the definition of READ (Ri) in Section
2.4.) Extending the argument in this fashion it can be easily proved that

a register Ri whose node is labeled K can be read out by executing a

sequence of instructions of class T or B containing K instructions and




no shorter sequence exists to read it out. Therefore lREAD (Ri)l = K.

(b) 1If Z(Ij) =1, Ij must have been labeled in step 3 of the labeling i
algorithm, and it reads out a register (explicitly or implicitly) during
its execution. Therefore this register must have been labeled 1 in
step 2. i

We now comment on the significance of the labels assigned by
the labeling algorithm. For each register Ri’ Z(Ri) indicates the minimum
number of instructions of class T or B needed to read out Ri' Therefore
Z(Ri) can be thought of as an 'observability index" for register Ri'
Z(Ij) has a similar connotation. 1If Z(Ij) 22, Z(Ij) - 1 indicates
the minimum number of instructions of class T or B needed to read out
' register D(Ij). if Z(Ij) = 1, instruction Ij reads out some register with -
label 1; thus the effects of execution of instruction Ij are directly

observable at the externma. pins of the microprocessor if z(Ij) = 1.

Ty

Various test generation procedures to be presented in the following % i
sections of this chapter generate tests in such a way that the knowledge
gained from the correct execution of tests used to check the decoding of
registers and instructions with lower labels ié utilized in generating k/ﬂ

‘ tests to check the decoding of registers and instructions with higher
} labels. Thus the fact that a register with a given label can be correctly

"observed" is used to generate suitable tests for correctly observing

registers with higher labels. Recall that a register with a lower label
implies that it has better observability tham the one with a higher label.

These test generation procedures may generate instructions with

higher labels to set up proper operands in various registers while

"checking out" instructions with lower labels. Since, as described above,
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the instructions with higher labels are not checked out yet, they may not
be able to set up the required operands successfully. This imposes the
basic requirement on the test generation procedure: the tests must be
able to check for proper execution of every instruction using other
potentially faulty instructions; otherwise certain faults may mask each
other and never be detected. This point will be illustrated by means of
examples in Sections 4.2 and 4.3.

Since each instruction is checked for its proper execution
using other potentially faulty instructions, it is not necessary to devise
some labeling scheme that assigns labels to registers indicating their
""distance' from the IN node which can signify their "controllability index."
The test generation procedures take into consideration the presence of
faulty instructions (which may fail to store required operands in registeré,
i.e., fail to control the registers correctly) to be used in checking out
other instructions.

Recall (Example 2.4) that those instructions of class B which
only change the logic level on some status pins of the microprocessor
(e.g. "Interrupt emable') are not represented in the S-graph. Therefore,
they are not labeled by the labeling algorithm. We assign Z(Ij) =1 for
every instruction Ij of class B which is not represented in the S-graph.
This assignment can be justified as follows: the effects of these
instructions of class B are directly observable at the externmal pins of the
microprocessor. Since the instructions which read out registers are
labeled 1 by the labeling algorithm, it makes sense to assign label 1 to

these instructions of class B.

s
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Lemma 4.2: All instructions of class B are assigned label 1.

Proof: Those instructions of class B which are represented in
the S-graph implicitly read out the program counter or a register
containing the address of an instruction. These instructions are assigned
label 1 in step 3 of the labeling algorithm. All the other instructions

of class B (which are not represented in the S-~graph) are also assigned

{1

label 1 as explained above.

Recall that instructions with label 1 have the highest

observability. Instructions »f class B enjoy the highest observability.
Example 4.1: The labeling algorithm will assign the following
labels to the nodes and edges of the S-graph in Figure 2.8.

3 Step 1: £(0UT) = 0.

Step 2: Z(R)) =AZ(R2) = AR, = L(Rg) = A(Ry) = LRy = 1, £(Ry) = 2.

Step 3: 2(17) = 2(18) = ZC19) ”4(110) = L(T = 1(I = 1(117) = 2(118) =

1) 16

= 2(1 ) = 4L, = 2@, = 1+
Step 4: £(I)) = £(1,) = £(Iy) = £(T,) = £(Tg) = £(1y)) = 4(T ;) = £(T}y)
r = 2(15) =2, 4(15) = 3.
The contents of the program counter (R6) are read out (implicitly)
! on the address bus during the fetching of every instruction, therefore
( Z(R6) = 1. The contents of the subroutine register (R7) are implicitly
@ read out on the address bus (by routing the contents through the program
counter), hence Z(R7) = 1. Note that 4(11) = Z(Iz) = 2, because Il and 12

both use immediate addressing (Refer to Table 2.1.), and lD(Il)I = ’D(Iz)’ = 1.

-

All other labels are self explanatory.

(S
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4.2. Test Generation Procedure for Detecting Faults in the Register

Decoding Function

The tests generated using the procedure guarantee that
the register decoding function denoted by the mapping ED is a one-to-one
correspondence from ® to R.

This procedure uses two data structures, a queue of registers
and a set of registers which are named Q and A respectively. The queue Q
is initialized with all the registers such that a register Ri lies ahead
of another register Rj in the queue, if and only if, Z(Ri) < z(Rj). The
set A is initialized to be empty. 1In each iteration of the test generation
procedure, set A i1s progressively augmented by removing the register
lying in the front of the queue Q and including it in set A; now the
register which was second in the queue before the augmentation of set A
lies in the front of the queue, i.e., the queue is updated. The tests
generated so far will assure that at any given stage, registers in set A
have disjoint image sets under mapping fD. The procedure terminates when
sat A contains all the registers that were initially in the queue and the
queue gets 2mpty. At this stage, the generated tests will guarantee that
all the registers have disjoint image sets under mapping fD’ establishing
that fD is a one-to-one correspondence. Recalling the discussion in
Section 4.1, the procedure utilizes the knowledge gained from the correct
execution of tests used to check decoding of registers with lower labels
to generate tests to check decoding of registers with higher labels.

ONE and ZERO will be frequently used as operands or addresses
of operands in various test procedures. This choice is arbitrary. We

could have used (1010...10) and its bit-wise complement (0101...01) as

operands or addresses of operands instead.
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Procedure 4.1 given below generates tests for detecting fauicts
in the register decoding function. Note that the test instructions are
generated only in steps 3(a), (b), and (c); other steps perform bookkeeping
tasks.

Procedure 4.1: Procedure to generate tests for detecting faults

in the register decoding function

! Step 1: Initialize the queue Q with all the registers such that
+ register Ri lies ahead of register Rj’ if and only if,

Z(Ri) < Z(Rj); Initialize the set A as empty.
Step 2: A « register at the front of Q; Update Q.

. Step 3: REPEAT
a) Generate instructions to write each register Ri of set A
with data ONE, and the register at the front of Q
(if there is one) with data ZERO. (The instructions of
the corresponding WRITE (Ri) sequencas need to be generated.)
b) Generate instructions to read out each register Ri
of set A, such that register Ri will be read before
g;l register Rj’ if and only if, Z(Ri) < Z(Rj). (The instructions
of the corresponding READ (Ri) sequences need to be generated.)
¢) Generate instructions to read out the register Rj at the
front of Q (if there is one). (The instructions of the
READ (Rj) sequence need to be generated.)
d) A« A U {Register at the front of Q}.
e) Update Q.

UNTIL Q = empty.

Step 4: Repeat steps 1, 2, and 3 with complementary data.




72

Procedure 4.1 describes the test generation procedure at a higher
level. There are many subtle points involved in the execution details
of this procedure, particularly if some registers can be written or read
out only implicitly. These points can be best illustrated by giving
an example. We show how to apply this algorithm to generate the tests
for the S-graph of Figure 2.8 in the following example accompanied
with the explanatory comments.

Example 4.2: Generation of tests for detecting faults in the

register decoding function for the S-graph of Figure 2.8.

Step 1: Q « R1R2R4R5R6R7R3; A€

step 2: A« {r;}; Q€ RyR,RR.R. Ry

Step 3:

Iteration 1

a) I1 with operand ONE; 12 with operand ZERO;
b) I, /Expected output data = ONE/
c) Ig; /Expected output data = ZERO/

d) A« {Rl, Rz}
e) Q<€ R,RgReR4RS
Iteration 2

a) I, with operand ONE; I, with operand ONE;

1
L

2

5 with operand ZERO; /stack pointer (Ra) is

written with a ZERO/

b) I, Ig; /R1 and R, are read out; expected output data = ONE/

c) 116; /stack pointer is implicitly "read out" on the address _

bus; expected output 'data' = ZERO/

AT IPEN ~-
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d) A« {Rl, Rys Ry )

e) Q¢ RgReR;R,

Iteration 3

a) I1 with operand ONE; 12 with operand ONE;

Is with operand ONE; /Rl’ R,, stack pointer (RA) are

written with data ONE/

I.. with address of the operand ZERO; /R5 is written

17
implicitly with "data" ZERO/

b) I I 6 /R1 and R, are explicitly read out while

7 1gi Iy
the stack pointer (R4) is implicitly read out/

¢) 1I,., with the address of operand ZERO; /R15 is implicitly

17

read out on the address bus with expected output
"data" = ZERO/
d) a«{rR, Ry, Ry, RS

e) Q€ R,, R,, R

6> 77 73

Iteration 4

a) I1 with operand ONE; 12

! IlS with operand ONE; /Rl, RZ’ stuck pointer (RQ) are

written with data ONE/

with operand ONE;

I.., with the address of operand ONE; /Rs is written

17
implicitly with "data" ONE/

I, with jump address = LOC l; /program counter is

9
written implictily with data = LOC 1. LOC 1 is chosen

different from ONE/

i
;
£l
i
El
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b,e¢) LOoC 1: 1I._; /I7 is stored in location LOC 1. When this

7

instruction is fetched, the program counter is
implicitly read out on the address bus; expected

output 'data" = LOC 1 # ONE. Rl is explicitly

read out as 17 is executed/

1,, with the address of operand ONE; /R2 is

Igs T15 I17

explicitly read out. R, and RS are implicitly read out/

{
d) A<« (R, Rys Rys Ros Rl

e) Q<R R

7° 73
Iteration 5

a) I, with operand ONE; I

1 with operand ONE;

2

IlS with operand ONE; /Rl’ RZ’ stack pointer (RA) are

written with data ONE/

117 with the address of operand ONE; /R5 is written

implicitly with '"data' ONE/

19 with jump address = LOC 2; /program counter is written

implicitly with data = LOC 2/

LoC 2: 1I,, with jump address = LOC 3; /Note that I,, is

20 0

the "Jump to subroutine" instruction, hence

program counter (now containing LOC 2 + 1) is saved
in the subroutine register (R7), and 2 new jump
address = LOC 3 is loaded into the program counter.

Thus R, and R, are written implicitly with "data"

6 7
LOC 3 and LOC 2 + 1, respectivelv. (Choose LOC 3

different from LOC 2 + 1 and also different from ONE/




|
l
I
|
|
|

b,c)

d)

e)

is fetched,

LoC 3: 17; /17 is stored in LOC 3. When I

7

the program counter is read out implicitly on

the address bus; expected output 'data" = LOC 3.
Thus, 17 is the first instruction in the subroutine.
I, explicitly reads out Rl/

Igs Iygs 117 with the address of operand ONE; /R2 is explicitly

read out. R, and Ry are implicitly read out/

is the '"Return from subroutine'" instruction.

/

Toys M1y

The contents of the subroutine register (R7) are transferred
to the program counter. The next instruction will be fetched
from the location LOC 2 + 1, as LOC 2 + 1 1is the return
address for the subroutine. When this new instruction is
fetched, the subroutine register will be effectively read out

through the program counter/

5

N
A ¢« iR R2’ R4, RS’ R6’ R7J

1,

Q < Ry

Iteration 6

a)

Il with operand ZERO; /Il is stored in location LOC 2 + 1.

o ‘= is fetched R7 is implicitly read out as explained
1 with data 2ERO/

T JINE; 12 with operand ONE;

I15 with operand ONE; 117 with the address of operand ONE;

/Rl’ Rys Ry and RS are written with 'data" ONE/
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19 with jump address = LOC 4; /the program counter implicitly

written with LOC 4. Choose LOC 4 different from ZERO/

LOC &: IZO with jump address = LOC 5; /the subroutine register
(R7) is written implicitly with data LOC & + 1.
Choose LOC 4 + 1 different from ZERO. When Lo is
fetched the program counter is implicitly read out;
expected output data = LOC &4/
b) LoC 5: I3 Igs Ties Iy with the address of operand ONE;

/R1 and R, are explicitly read out; R, and Rg are

implicitly read out/ g

Iy /causes the subroutine register (R7) to be

- implicitly read out through the program counter when

the next instruction will be fetched from location
Loc 4 +1
. 3 : : _ = \
c) LOC &4 + 1. I I /R3 is read out using READ (R,) <I6, L)
sequence; expected output data = ZERQ. When I

618

fetched R, is implicitly read out as explained above/
1
d) A« [Rys By, Ryy Rgy Rgy Roy Ry

e) Q ¢ empty

1

Step 4: Repeat steps 1, 2, 3 using complementary data.

The generated test sequence will be I Iz, I7, I8’ Il’ Iz,

, I7, 18’ 116’ 117, 121, 16’ I7. Thus the "writing' process

l)
I

TLAEEREE
involved in step 3(a), and the ''reading' process involved in step 3(b) and

(¢), do involve implicit writing and reading of registers. The whole

procedure requires careful selection of '"data", i.e., both the operands . —

and address of operands. The jump addresses in the ''Jump', "Jump to
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subroutine', and "Return from subroutine' instructions must be carefully
chosen to avoid reexecuting the already executed tests or overwriting
the instructions.

We now present a lemma describing the behavior of a micro-
processor under faulty register decoding. This will then be used to prove
that the tests generated using Procedure 4.1 will detect any detectable
fault in the register decoding functiom.

Lemma 4.3: Let READ (R;) = <1k1, Ikz,..., Ikm>, and WRITE (R, )

a) When Ri is written with data d by executing the instructions

in the WRITE (Ri) sequence, all registers in the set fD(D(WRITE (Ri)))

=f@aC_ ,1_,..., 1 are writt ith data d, unless (1). £ _(D(1
D( ( o’ e, , pu)) en wi unless (1) D( ( pj))
= {3} for some I £ WRITE (R;), 1 £ j <n-1, in which case R, is written
]
with either a ONE or a ZERO depending on technology, or (2). fD(D(Ip »
n

= {0}, in which case the contents of Ri remain uncnanged.
b) When Ri is read out by executing the instructions in the
READ (Ri) sequence, during the process of reading out Ri all registers

s I, 5.0y 1 )) are written with data d and data d
k k k
1 2 m-1 i
is read out, if Ri contains data 4, unless fD(S(Ik y) = {é}, for some
J
€ READ (Ri>’ in which case a ONF or a ZERO will be read out, depending

in the set fD(D(I

Te

J
on technology.

Proof: The lemma follows immediately from the faulty behavior
of the register decoding function £, ]

Example 4.3: With reference to the S-graph of Figure 2.3,

- ! y - . . . ,
READ (R3) '16’ I7 and WRITE (R3) <Il’ 15). When R3 is written with

.ata d by executing I, with data d, and IS’ all registers in the set

1
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£, (DWRITE(R,))) = £,(D(T,, 1)) = £,(D(T)) U £,(0(1g)) = £,(R) U £y (R3)

[}

are written with data 4, unless fD(Rl) f$}, in which case R3 is written

with either a ONE or a ZERO, or fD(R = {¢}, in which case the contents cf

3)
3 remain unchanged. When R3 is read out by executing 16 and I7, all registers

in the set fD(Rl) are written with data ¢ and data d is read out, unless fD(Rl)

R

= {¢] or fD(R3) = {¢}, in which case either a ONE or a ZERO is read out. I
Theorem 4.1: The test sequence generated by using Procedure

4.1 is capable of detecting any detectable fault in the fault model for the

register decoding functiom.

Proof: The proof is b induction. At the beginning of step 3(a)

of Procedure 4.1, let set A={R. , R, , ..., R, }. Let the induction
i’ i, i
i J N N L = 2

hypothesis be fD(Ril) n ED(RiZ) N fD(hik) {6}, and fD(Rij) # {2},
for each Ri € A. At the end of step 3(d) of Procedure 4.1, i.e., when

b
set A is augmented, let set A = {R. , R, , ..., R, , R, }. Wewill

1 R2 e

prove that £ (R, > N £ (R, ) N ..... ff (R, )N £ (R, 4

D i D i, D i D lk+1) = {#}, and
£ @R, ) # {s}.
Doy

In step 3(a), registers of gset A are written with data ONE (ZERO),

and register Ri , which is at the front of the queue, is written with
k+1

data ZERO (ONE), by executing* the instructions in the corresponding WRITE

sequences. If fy(R; ) = {¢}, the fault will be readily detected when
k+1

appropriate instructions are executed to read out Ry in step 3(c), as
k+1

it will fail to produce either a ONE or a ZERO following Lemma 4.3. Assume

is
A

that for some register Riz of set A, fD(Riz) n fD(Ri ) # {é}. If Ry
k+1

written after Ry in step 3(a), the fault will be detected when
k+1

"Though strictly speaking Procedure 4.1 is a test generation procedure
in the proof we are assuming that the tests are executed.




79

Ry is read out in step 3(c), since according to Lemma 4.3, all the

k+1

. - + r'\
registers in the set fD(Ri )}, and hence in the set fD(Riz) . fD(Ri )

A k+1
will be written with ONE (ZERO). Since fD(Ri )y N fD(Ri ) s fD(Ri ),
2 k+1 k+1
when R, is read out in step 3(c), it will either produce a ONE

i
k+1
instead of a ZERO, or a ZERO instead of a ONE. Note that since

z(Ri ) s Z(Ri ), the process of reading out of Ri will not require

A k+1 Z
routing of R, through R, . Similar arguments apply when R, 1is
) te+l 2
written before R, in step 3(a). In this case the fault will be
k+1
detected when Ri is read out in step 3(c).
2
The basis of induction, i.e., when A = {Ri 1, fD(Ri ) # {®}, and
1 1
when A = {R. , R, }, £ (R, )N £ (R, ) = {¢#} can be readily proved following
S I R b,

the same arguments used so far. Using these arguments, it is guaranteed

n
that 0 f_(R,) = {#}, where R = {R,, R R_}. Since all the registers
i=1 D 1 1 n

g e

have disjoint image sets under mapping fD, f_ cannot be a many-to-one

D
correspondence. Moreover, since fD(Ri) # {#} for each R; € R, fD cannot
be a one-to-many correspondence from ® to R. Therefore fD is guaranteed
to be a one-to-one correspondence from ® to R. If follows immediately

that the register decoding function (denoted by fD) is free of any

detectable fault. Note that for some registers, even if fD(R*) # {Ri}, £

D
could still be a one-to-one correspondence. For example, we may have
ED(Ri) = tRj} and fD(Rj) = {Ri}. In such a case, the fault is an
undetectable fault. O
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4.3. Test Generation Procedures for Detecting Faults in the Instruction
Decoding and Control Function

In this section we present the test generation procedures to
detect faults f(Ij/¢), f(Ij/Ik), and f(Ij/Ij+{k) for each ordered pair of

instructions Ij and Ik' We divide the overall task of test generation

into three subtasks depending on which class (T, M, or B) instructions

Ij and Ik belong to. Following this, we first give the order in which

the tests are applied, and then describe the details of test generation.

The overall task of detecting faults in the instruction
decoding and control function can be divided into three subtasks.
subtask 1: Test for fault f(Ij/¢), f(Ij/Ik), and f(Ij/Ij+ik),

where Ij € class T, and Ik € class (T U M).

subtask 2: Test for faults f(Ij/¢), f(lj/l , and f(lj/Ij+Ik),

K
where Ij € class M, and Ik € class (T U M.
subtask 3: Test for faults f(Ij/¢), f(Ij/Ik)’ and f(Ij/Ij+Ik)’
where Ij € class B, and Ik € class (TyU My B);
or Ij € class (T Yy M) and Ik € class B.
The basic philosophy behind this task division is to employ a

systematic approach that tackles a complex problem by dividing it into

logically distinet and smaller subproblems.

¥

4.3.1. Order of Test Application
?

Before presenting the details of test generation, we first
describe the order in which the tests are applied. The tests for each
subtask described above are to be executed by the microprocessor under

test in the order given below.




First we concentrate on instructions with label 1, i.e.,

Z(Ij) = Z(Ik) = 1, and apply tests to detect faults f(Ij/®), f(Ij/Ik)’

and f(Ij/Ij+Ik). Then we apply tests to detect faults f(Ij/Ij+1k),

where Z(Ij) = 1 and l(Ik) = 2. This is followed by tests to detect
faults f(Ij/Ij+{k), where 2 S Z(Ij) < K ax and Z(Ik) = 1. (Kmax
indicates the maximum value of the labels of edges representing instruc-
tions in the S-graph.) Thus we check that all instructions with label 1
are decoded correctly, no instruction with label 1 causes additiomal
execution of an instruction with label 2, and no instruction with a
label greater than 1 causes additional execution of an instruction with
label 1. This procedure can be easily generalized and is given in a

precise algorithmic form below.

Algorithm 4.2: Algorithm to determine the order of test

application for detecting £(I./9), f(Ij/Ik)’ and f(IjlljiEkl
]
FOR K < 1 TO Kmax DO

BEGIN

Step 1: Apply tests to detect faults f(Ij/®), f(Ij/Ik),
¥ 2 = = K.
and f(Ij/Ij Ik)’ where (Ij) Z(Ik) K
Step 2: Apply tests to detect faults f(Ij/Ij+Ik), where
< < = < .
1 z(Ij) K, Z(Ik) RK+1,and K<K
Step 3: Apply tests to detect faults f(Ij/Ij+{k), where

< 4 < A = ¥.
K+ 1 (Ij) Koax’ (Ik) K

Strictly speaking, this order need not be followed during

the actual application of tests, but it plays a very crucial role in
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]
proving that the tests detect faults in the instruction decoding and g
control function. Therefore we assume that the tests are applied in the é
order given by Algorithm 4.2. ?
Note that in steps 2 and 3 it is not necessary to check for
faults f(Ij/¢) or f(Ij/Ik) because these faults are detected by tests
involved in step 1. We now present an example to illustrate the three
.steps of the algorithm.
For concise representation we introduce some notation at this
stage. Let IA’ IB, etc., denote sets of instructions. Then f(IA/IB)
would denote a set of faults given by {f(Ii/Ij) | I €1, and Ij € IB}.

A

= = { =
For example, let I {1 12} and I = (1, 14}, then f(IA/IB)

- A l’
{f(11/13), f(Il/IA), £(1,/1,), f(IZ/Ia)}. Similarly £(I,/I,+I.) and
f(IA/¢) denote the corresponding sets of faults. Needless to say, we do

/T +T.).

not incorporate f(Ii/Ii) or f(Ii/Ii+ii) in the sets f(IA/IB) or f(l'A At

Z(IA) denotes the set of labels of instructions in set IA.
Example 4.4: This example illustrates the steps of
Algorithm 4.2 in the case of subtask 1 for the S-graph of Figure 2.8.

Iteration 1

/1, +T.)

Step l: Apply tests for faults f(IA/¢), f(IA/IB), and r(IA e

where IA = IB = {17, 18, 116’ I17’ 118: 119}’ and

Z(IA) = z(IB)

{13.

Step 2: Apply tests for faults f(IA/IA+iB) where I, = {17, Igs Iy

Iiz0 Tpgs Tpghs g = (10, Tpu 5y Tpu Tgs Tpps Typs Tpgs gl
= 2 = {2},
and £(1,) {11, 1y = {2

Step 3: Apply tests for faults f(IA/IA+{B) where IA = iIl, 12, 13,

}, and

Igs Ign I 70 Tgo T160 T170 1187 Ty
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= ) -
2y = {2, 3}, 2y = {1}.
Iteration 2:
: +
Step l: Apply tests for faults f(IA/é), f(IA/IB), and f(IA/IA IB)

= 1 =
where I, {11, I, 15 I, I3 I {11, I, I, I, I,

I;s Typs Iqgs 115}, and 4(1,) = z(IB) = 2.

. = {
Step 2: Apply tests for faults f(IA/IA+1B) where I, = I, Ig, Lg

}, 1, = (1.}, and

T170 T1ge T1oe Ipo Ips I3s Igs Iy
2@, = {1, 2}, 21 = {3}

B

5

Step 3: Apply tests for faults f(IA/IA+{B) where I, = {ISJ,

- |
Iy = {Ips Ips I3 Iy5 Tgs Ipgs Tpys Ipgs Iygl, and

11y = {3}, £y = (2}

Iteration 3:

Step 1: Apply tests for fault f(15/¢). (Note that Z(IS) = {3}.) 4

The next job is to develop the details of test generation for
detecting faults f(Ij/®), f(Ij/Ik), and f(Ij/Ij+{k). These details
depend very heavily on the labels of instructions and their source and
destination registers. Therefore we partition the job into various cases
depending on these labels and present the test generation procedure for
each case.

At this stage we make an assumption about the labels of edges
representing instructions. If Ij € class M then Z(Ij) £2, i.e., if
Z(Ij) > 2 then Ij € class T. Recall from Lemma 4.2 that all instructions
of class B are labeled 1. Thus the destination of an instruction of
class M can only be a2 main memory location or a register with label 1.

This assumption can be easily justified for available microprocessors,
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since the result of an instruction of class M is usually stored in a main
memory location or an accumulator [Cush77]; on the other hand, the
destination register of an instruction of class T can have any label.
Without this assumption the details of the test generation procedures

become extremely complicated.

4.3.2. Test Generation for f(Ij[Ql
The details.of test generation depend principally on Z(Ij)-
We consider three cases, namely, case A(l), case A(2), and case A(3),
depending on Z(Ij). The suffix A is used to denote that a case belongs
to the details of test generation for f(Ij/¢). These cases are divided
into subcases which are listed in Table 4.1. For each subcase, the
table gives which test generation procedure is applicable and which

theorem proves the fault coverage.

4.3.2.1. Test Gemeration for f(IJ./QS) When zgj) = 1

This case is referred to as case A(l) and is divided into
two subcases.

Case A(1.1): OUT € D(Ij), i.e., Ij is expected to read out a
register with label 1 (according to Lemma 4.1).

Case A(1.2): Ij is an instruction of class B not represented
in the S-graph, i.e., Ij only changes the logic level on some status pins.

In either subcase the fault detection is easy since Ij has the
highest observability as signified by Z(Ij) = 1.

We give the test generation procedures below. It is straight-
forward to derive the tests in terms of the assembly language instructions

of the microprocessor to be tested from the procedures to follow. For
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conciseness we say that the microprocessor executes these procedures

instead of saying that the microprocessor executes the tests generated by {

these procedures. For the same reason we treat these procedures as if 3*
they are test execution procedures instead of test generationm procedures. i
We denote various operands for instructions by OPERAND 1, OPERAND 2, etc., !

and various results stored in registers (as a consequence of instruction
execution) by RESULT 1, RESULT 2, etc.

Procedure 4.2:

This procedure is applicable for case A(1l.1). It
generates tests to detect fault f(Ij/¢) when Z(Ij) = 1 and OUT < D(Ij).
is

3

Step 1: Store proper operand(s) in S(Ij) such that when I
4

executed, the expected output '"data" is different from the
quiescent logic value on the data (or address) bus.
Step 2: Execute Ij. ]

Procedure 4.3:

This procedure is applicable for case A(l.2). 1t
generates tests to detect fault f(Ij/¢) when 2(Ij) = 1 and Ij belongs to §
class B but it is not rapresented in the S graph.

Step 1: Execute the proper instruction to set up the logic value on a
status pin to x (x € {O, 1}) if the instruction Ij under
consideration, when executed, sets up the logic value on that

status pin to X.

Step 2: Execute Ij. [
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4.3.2.2. Test Generation for f£(I . /%) When zLIj) = 2
J

This case is referred to as case A(2Z). In this case
|Reap (0(1, )] = 1. Let READ (D(1;)) = {10, Of course, 4(1) = 1,
and by definition of the READ sequence Ik £ (T Y B) and OUT € D(Ik).

Procedure 4.4:

This procedure is applicable for case A(2). It generates

tests to detect fault f(Ij/®) when Z(Ij) = 2.

Step 1: Store OPERAND 1 in D(Ij) and proper operand(s) in S(Ij)
such that when Ij is executed it produces RESULT 1
in D(Ij), and RESULT 1 # OPERAND 1.

Step 2: Read out D(Ij) by executing READ(D(Ij)).
/Expected output data = OPERAND 1/

Step 3: Execute Ij.

Step 4: Read out D(Ij) by executing READ (D(Ij)).

I

/Expected output data = RESULT 1/

Example 4.5: This example (depicted in Figure 4.1)
illustrates Procedure 4.4. Ij is an "Add" instruction which adds
the contents of registers R1 and R2 and stores the result in R3.

w ©
can be chosen to be ONE, and RESULT 1 to be ZERO, requiring that

READ (D(IJ.)) = <Ik>, Z(Ik) = 1 and I, € class T. OPERAND 1

operand ZERO be stored in both R1 and R2. Ik is executed to make

sure that R3 does store OPERAND 1. This is followed by execution of

Ij and Ik' —
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Figure 4.1. Example illustrating Procedure 4.4.
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Theorem 4.2: Procedure 4.4 detects f(Ij/¢) in case A(2).

Broof: Note that £(I,) = 1 where READ (D(IJ.)) = (Ik>.
(Refer to Figure 4.1.) Since the tests are applied in the order
specified by Algorithm 4.2, the microprocesscor under test executes this
procedure after executing the tests required to detect f(IP/¢),
f(Ip/Iq), and f(Ip/Ip+Iq) where Z(Ip) = z(Iq) = 1, and f(IV/IV+iW)
where Z(Iv) = 1 and E(Iw) = 2. Therefore, when the microprocessor under
test executes this procedure it has been already checked that the
READ(D(Ij)) = <Ik> sequence can correctly read out D(Ij) and its
execution does not cause additional execution of any instruction with
label 2; in particular the contents of D(Ij) are not changed after
the execution of READ (D(Ij)). Therefore step 2 ensures that D(Ij)
stores OPERAND 1. This step is necessary because due to faults
involved in the instructions used to write data in D(Ij), RESULT 1
may be stored in D(Ij) instead of OPERAND 1. If step 2 is not executed,
the fault f(Ij/®) will be masked.

In step 3, Ij is executed which is expected to produce RESULT1
in D(Ij). 1f f(Ij/®) is present, the contents of D(Ij) will not
change. Consequently when D(Ij) is read out in step 4 the fault will

be detected.

4.3.2.3. Test Generationm for fng/®)4Hhen Z(Ij2,= K=3

This case is referred to as case A(3). According to our

assumption in Section 4.3.1, Ij € class T. This case is divided into

two subcases.




Case A(3.1): S(Ij) is not the destination register of any
instruction belonging to the READ(D(Ij)) sequence. Figure 4.2 illustrates
this case, Z(Ij) =K =23, E(D(Ij)) = k-1, z(S(Ij)) = K, and READ {D(Ij))

= (1 I P | Y. Thus it is possible to read out D(Ij) without

3
Pg-1 Pg-2 Py
routing the contents of D(Ij) through S(Ij). In this case we follow
Procedure 4.4. (The same procedure which is used in case A(2).)

Theorem 4.3: Procedure 4.4 detects f(Ij/¢) in case A(3.1).

Proof: The proof follows the same arguments given for the
proof of Theorem 4.2, except for one change. The microprocessor under
test executes this procedure after executing the tests required to detect
£(1_/9), £(1 /1 £(I /I +I ) where 1 = (I 4(I_) = K-1, and

( 0 ?), £( b q), ( o/ Ip q) ere ( p), ( q)
< < - = { {
£(1,/1,H ) where 1 < £(L ) < X-1 and £(I_) = K. Note that in this case

READ (D(Ij)) = (1 , I oI > as illustrated in Figure 4.2.

Pg-1  Pg-2 1
Since ﬂ(D(Ij)) = k-1, 2(1p y=1i, for 1 =i < K-1.
i
Therefore, when the microprocessor under test executes this
procedure it has been already checked that the execution of any

instruction Ip € READ (D(I.)) does not give rise to the additional execution

; i
of any instruction with label XK. D(Ij) can be correctly read out by executing
READ (D(Ij)) in step 2 of this procedure, and after the execution of
READ (D(Ij)) the contents of D(Ij) are not changed (note that
Z(D(Ij)) = K-1 and ﬂ(Ij) = K). All the remaining arguments are exactly
the same as given in the proof of Theorem 4.2. O

Cage A(3.2): S(Ij) is the destination register of an instruc-

tion belonging to the READ (D(Ij)) sequence. Figure 4.3 illustrates this

case; Z(Ij) =K 23, l(D(Ij)) = g-1, ﬂ(S(Ij)) = R-2.
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1}3:‘
1

Figure 4.2. 1Illustrating case A(3.1) in Section 4.3.2.
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ey

Figure 4.3. Illustrating case A(3.2) in Section 4.3.2.
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L READ (D(I.)) = (I » I ,-++» I_ ) and READ (S(L.)) = (I ,
] Pr-1 Pg-2 P 3 Pg-2

1 y +oos I_ ) where £(I_ ) =1i for 1 € i <K-1. Let I_ € WRITE(S(I.))

and D(Is) = S(Ij). Therefore, E(Is) = K~1, and z(S(IS)) = K-1.

A Procedure 4.5:

This procedure is applicable for case A(3.2). It generates
tests to detect fault f(Ij/®) when l(Ij) =K 2 3, and S(Ij) is the
destination register of an instruction belonging to the READ (D(Ij))

sequence.

Step l: Store OPERAND 1 in D(Ij) by executing WRITE (D(Ij)).

k\ Step 2: Read out D(Ij) by executing READ (D(Ij)). %
» ;

/Expected output data = QPERAND 1/

Step 3: Store OPERAND 2 # OPERAND 1 in S(Is) by executing WRITE (S(Is)).
¢ Step 4: Read out D(Ij) by executing READ (D(Ij)).
= /Expected output data = OPERAND 1/

: Step 5: Execute I, and Ij' /Refer to Figure 4.3/

s A a3 oo s von

Steg_g: Read out D(Ij) by executing READ (D(Ij)).

/Expected output data = OPERAND 2 # OPERAND 1/ 1

~H;-._

Theorem 4.4: Procedure 4.5 detects f(Ij/®) in case A(3.2).

Proof: 1 = l(l’p ) =i < K-1, for each instruction Ip in the
i i
READ (D(Ij)) sequence. When the microprocessor under test executes this

procedure it has already executed the tests required to detect f(Ip/@),

/T + < < K-
f(Ip/Iq) and f(Ip,Ip Iq) where 1 Z(IP), Z(Iq) K-1, and f(Iv/Iv+Iw)

where 1 = Z(Iv) < K-1 and z(xw) = K.

1
H
§
i
t
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Therefore, when the microprocessor under test executes this
procedure it has been already checked that the READ (D(Ij)) sequence can
correctly read out D(Ij) and the execution of any instruction in this
sequence will not give rise to additional execution of any instruction with
label K; in particular the contents of D(Ij) and S(Is) remain unchanged.
(Note that Z(D(Ij)) = Z(S(Is)) = K=1.) Moreover, the execution of Is
does not give rise to additional execution of any instruction with
label K, since z(Is) = K-1; thus in particular the contents of D(Ij)
remaig unchanged after the execution of Is.

In step 2, D(Ij) is correctly read out by executing READ (D(Ij))
and it continues to store the operand stored in it, i.e., OPERAND 1,
after this '"read out" process. In step 3, S(IS) is written with OPERAND 2
by executing WRITE (S(Is)). Since Z(S(Is)) = Z(D(Ij)) = k-1, it is
possible to write data in S(Is) without routing it through D(Ij) during
the execution of WRITE (S(Is))- Step 4 ensures that D(Ij) continues to
store OPERAND 1 after step 3. Moreover, D(Ij) and S(Is) continue to
store OPERAND 1 and OPERAND 2 , respectively, after the 'read out"
process in step 4.

Since Z(Is) = K-1, the execution of IS in step 5 will correctly
transfer the contents of S(Is) to S(Ij), i.e., S(Ij) now contains
OPERAND 2 # OPERAND 1. Also the contents of D(Ij) remain unchanged, since
z(IS) = K-1 and Z(D(Ij)) = K~-1. After this Ij is executed which is
expected to change the contents of D(Ij) to OPERAND 2. 1If f(Ij/¢) exists,
I, will fail to do so and the fault will be detected when D(Ij) is read

out in step 6. o
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4.3.3. Test Generatiom for f(Ilekl
The details of test generation depend principally on Z(Ij) and
z(zk). We consider three cases, namely, case B(l), case B(2), and
case B(3) depending on Z(Ij)- The suffix B is used to denote that a case
belongs to the details of test genmeration for f(Ij/Ik). These cases are
divided into subcases which are listed in Table 4.2. For each case, the
table gives which test gemeration procedure is applicable and which

theorem proves the fault coverage.

4.3.3.1. Test Geperation for f(IjLLk) when z(Ij) =1
This case is referred to as case B(1l) and is divided into two
subcases depending on 1(Ik).
Case B(1l.1): 1(Ik) 2 2. Since l(Ij) = 1, the results of the

k

the behavior of the microprocessor as observed at its extermal pins

execution of Ij are directly observable while those of I, are not. Hence

under the fault f(Ij/Ik) is the same as it would be under the fault
f(Ij/ﬁ). Therefore Procedures 4.2 and 4.3 given in Section 4.3.2.1 should
be followed in this case.

Case B(1.2): 1(Ij) = Z(Ik) = 1. Many of the faults in this
case would be readily detected because Ij and Ik have the highest
observability. For example, Ij and Ik may read and write data into the
main memory during different machine cycles of the corresponding instruc-
a different sequence of

k

status signals may be emitted on the status pins. Therefore we will

tion cycles; or during the execution of Ij and I

explicitly discuss the detection of those faults which cannot be easily

detected in this fashion. This case can be further divided into two

subcases, namely, case B(l.2.1) and case B(1.2.2) as described below.
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The tests generated by Procedure 4.6 for case B(1l.2.1) are to be applied

before those generated by Procedures 4.7 and 4.8 for case B(1.2.2).

Case B(1.2.1): During the execution of instructions Ij and Ik

the results of the operations performed are "read out". The operation
performed could be as simple as a data transfer from a register to the
main memory. Examples of this case are given below.

Example 4.6: Instruction Ij is "Store the contents of register

R, into the main memory using direct addressing,'" and instruction I, is

k

into the main memory using direct

1

"Store the contents of register R2
addressing."
Now consider another example. Instruction Ij is "Add the contents T
of the accumulator and the contents stored at the top of a LIFO stack
(maintained in the main memory) and store the result at the top of the stack,”
and instruction Ik is "Subtract the contents of the accumulator from the
contents stored at the top of the LIFO stack and store the result at the
top of the stack."

-

Procedure 4.6:

This procedure is applicable for case B(1.2.1). It i
generates tests to detect fault f(Ij/Ik) when Z(Ij) = Z(Ik) = 1 and during
the execution of Ij and Ik the results of the operations are read out.
Step l: Store proper operands in S(Ij) and S(Ik) such that when Ij is
executed RESULT 1 is read out and when I is executed RESULT2 is

read out, and RESULT 1 # RESULT 2.

Step 2: Execute Ij. /Expected output data = RESULT 1/
Step 3: Execute I /Expected output data = RESULT 2/ h
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Theorem 4.5: Procedure 4.6 detects f(Ij/Ik) in case B(1.2.1).

Proof: 1If the proper operands are really stored in S(Ik) in

step 1 so that RESULT 2 is read out when I, is executed, the fault will be

k

detected in step 2 itself, as RESULT2 will be read out (instead of expected

output data = RESULT 1). h
On the other hand, if the required operands are not stored in

S(Ik) due to faults involved in the instructions used to write data in

s(Ik), the fault may not be detected in step 2; the execution of I, may

k

read out RESULT 1 as the wrong operands are stored in S(Ik). But in this
case the fault will be detected in step 3 as the execution of Ik will
produce RESULT 1. Note that if f(Ij/Ik) is present we assume that Ik is

correctly executed. (Recall the fault model in Section 3.2.) =

Case B(1.2.2): During the execution of instructions Ij and
Ik the results of the operations performed are stored in registers.
(The results are not read out as in case B(1l.2.1).) The operation performed
could be as simple as a data transfer from a main memory location to a
register. 1In this situation the instruction belongs to class T. 1If the
operaticn involves some data manipulation, the instruction belongs to

class M.

belongs

Note that Z(Ij) = z(xk) = 1. If the instruction Ij or Ik

to class M, at least one of the operands for Ij or Ik must be stored ir
the main memory. (If all the operands for Ij and Ik are available in
registers we would have E(Ij), Z(Ik) 2 2. Refer to step 4 of the labeling

algorithm given in Section 4.1.) The address of the operand stored in

the main memory is computed and then transferred from a register holding

4
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it to the address register of the main memory. Thus the register storing
the address of the operand is implicitly read out during the execution
of Ij and Ik' This is precisely the reason to assign label 1 to Ij and Ik.

(Refer to step 3 of the labeling algorithm.) As mentioned earlier, the

results of operations performed under Ij and I, are stored in registers.

k
If the instruction belongs to class M, the result produced is stored in
a register with label 1. This is consistent with the assumption (regarding
the label of an instruction of class M) made in Section 4.3.1.

If the instruction belongs to class T the data transferred from
the main memory may be stored in a register with label greater than 1.
In this situation fault detection may or may not be easy as illustrated
in the following example.

Example 4.7: Let instruction Ij be '""Load the contents of the
memory location pointed to by register Rl in register R2,” and let
instruction I, be '""Load the contents of the memory location pointed to by

k

register R, in register R,." Both instructions store the result of their

3
operation (which is a simple data transfer) in register RZ' Even if
Z(Rz) = 2, fault f(Ij/Ik) can be easily detected by choosing different

addresses (pointers) in R, and R,. If f(Ij/Ik) is present, the address

1 3
stored in R3 will be (implicitly) read out on the address bus instead of
the address stored in R1 when Ij is executed, and the fault will be detected.

Thus this case is really not different from case B(l1.2.1).
We now consider another example where the fault detection is not
so easy. Let instruction Ij be '""Load the contents of the memory location

tt

pointed to by register R1 in register R, and let instruction Ik be

"Load the contents of the memory location pointed to by register Ry in
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register R.." 1In this case f(Ij/Ik) can be detected by storing different

3

data in R, and R, and then reading out these registers by executing

2 3
READ (Rz) and READ (R3). 1f Z(RZ) or £(R3) is greater than 1, (i.e., READ (RZ)
or READ (R3) contain instructions with label greater than 1) it is
not guaranteed that READ (Rz) and READ (R3) sequences can correctly read N

out R, and R3 because the microprocessor under test has not yet executed

tests to detect £(I /I ), £(I /I _+L ) where 2(I ), £(I_) 2 2. 1In this
( p q) ( o' Ip g ( p) ( q)

case we treat Ij and Ik as if they have label E(RZ) + 1 and £(R3) + 1,

respectively, as far as the test generation for faults f(Ij/Ik),

+ +,) i .
f(Ij/Ij Ik)’ f(Ik/Ij), or f(Ik/Ik Ij) is concerned

Ll

e g

Case B(1.2.2) being considered applies only to those instruc-
tions which store their result in a register with label 1. Depending
on whether the results of Ij and Ik are stored in the same or different

registers we divide this case further into two subcases.

SRl St S S e e

Case B(1.2.2.1): The results produced by executing instructions

3
[

Ij and Ik are stored in the same register. Let this register be designated

as RP; furthermore, let READ (Rp) = (Ip)- Note that Z(Ip) = 1. An
example of this case is given below.

Example 4.8: Instruction Ij is "Add the contents of the %
accumulator and the contents of the memory location (next to the one storing
the opcode of instruction Ij) and store the result in the accumulator,'
and instruction I, is '""Subtract the contents of the accumulator from the

k

contents of the memory location and store the result in the accumulator."

Procedure &4.7:

This procedure is applicable for case B(1.2.2.1). It

generates tests to detect fault f(Ij/Ik) when Z(Ij) = i(Ik) =1, and dﬁring
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the execution of Ij and Ik the results of the operations are stored in the

same register RP.

Step 1: Store proper operands in S(Ij) and S(Ik) such that when
I. is executed RESULT 1 is produced and when Ik is executed
RESULT 2 is produced, and RESULT 1 # RESULT?2

Step 2: If Rp € S(Ij) 5! S(Ik) then read out register Rp by executing
READ (RP) = pr>. /To make sure that Rp contains proper
operand to be stored in step 1. The other member of S(Ij) or
S(I,) is a location in the main memory ./

Step 3: 1If Rp z S(Ij) L S(Ik) then repeat step 2.

Step 4: Execute Ij'

Step 5: Read out register Rp by executing READ (Rp) = <Ip>.

/Expected output data = RESULT 1/ -

Theorem 4.6: Procedure 4.7 detects f(Ij/Ik) in case B(1.2.2.1).
Proof: If the register Rp is a member of S(Ij) or S(Ik) it
must be ensured that it contains the proper operand to be stored in step 1,
otherwise Ik could produce RESULT 1 instead of RESULT2 and fault masking
would occur.
The instruction IP involved in step 2 will correctly read out
Rp because Z(Ip) = 1, and the microprocessor under test would have
already executed the tests to detect f(Ip/Iq) where Z(Iq) = 1 (generated
by Procedure 4.6 for case B(1.2.1)); however, if the fault f(Ip/Ip+Ip,)

1, the contents of Rp may

is present, where Z(Ip,) = 2 and D(IP,) = {Rp
change after it is read out by executing Ip. If this happens it will be

detected in step 3. On the other hand if the contents of Rp do not change
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after the first execution of IP (in step 2), they will not change after
the second execution of Ip (in step 3) either.

In step & Ij is executed. If f(Ij/Ik) is present, RESULT2 will
be produced in Rp in step 4, and it will be detected when Rp is read
out in step 5. -

Case B(1.2.2.2): The results produced by executing instruc-

tions Ij and Ik are stored in different registers. Let the ‘result
produced by Ij be stored in register Rp. Furthermore, let READ (Rp) = <Ip>,
and Z(Ip) = 1. An example of this case is given below.
Example 4.9: Instruction Ij is "Load register R1 from the
main memory location (mext to the one storing the opcode of instruction

Ij),” and instruction I s '"Load register R2 from the main memory

Wt
location." -

Procedure 4.8:

This procedure is applicable for case B(1.2.2.2).
It generates tests to detect fault f(Ij/Ik) when Z(Ij) = z<1k) =1,
and during the execution of Ij and Ik the results of the operations are

stored in different registers.

Step 1: Store OPERAND 1 in register RP and proper operands in S(Ij)
such that when Ij is executed RESULT 1 is produced in RP’
and RESULT 1 # QPERAND 1.

Step 2: Read out register RP by executing READ (RP) = <Ip>.
/Expected output data = OPERAND 1/

Step 3: Repeat step 2.

Step 4: Execute Ij'

rar e— P
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Step 5: Read out register Rp by executing READ (RP) = (Ip)- ;

fa

/Expected output data = RESULT 1 # OPERAND 1/

Theorem &4.7: Procedure 4.8 detects f(Ij/Ik) in case B(1.2.2.2).
The proof of this theorem follows the proof of Theorem 4.6

closely and will not be repeated here.

4.3.3.2. Test Generation for f(Ij[Lk) when Z(Ijg = 2 ]

This case is referred to as case B(2) and is divided into two
subcases depending on whether or not D(Ij) = D(Ik).

Case B(2.1): D(Ij) # D(Ik)' In this case under the fauls
f(Ij/Ik), the contents of D(Ij) remain unchanged as they would remain
under the fault f(Ij/®). Hence, the procedure for this case is the
same as Procedure 4.4. Furthermore, using arguments similar to those in

the proof of Theorem 4.2, it can be proved that Procedure 4.4 detects

f(Ij/Ik) in this case.
Case B(2.2): D(Ij) = D(Ik).' This case is not treated here because ;

all the details considered for case C(3.1l) in Section 4.3.4.3 apply to this

case.: Procedure 4.17 used to detect f(lj/1j+1k) in case C(3.1) (refer to

Table 4.3) can detect £(I /I ) in case B(2.2) discussed here. This will ;

be pointed out in the proof of Theorem &.16.

4.3.3.3. Test Generation for f(Ij{lk) When l(Ij) =K 23
This case is referred to as case B(3). Note that Ij belongs
to class T according to our assumption in Section 4.3.1. This case

can be further divided into two subcases depending on whether or not

D(Ij) = D(Ik).
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Case B(3.1): D(Ij) # D(Ik). In this case under the fault
f(Ij/Ik), the contents of D(Ij) remain unchanged as under the fault
f(Ij/¢). Hence, the procedures for this case will be the same as
Procedures 4.4 and 4.5. Note that Procedure 4.4 is applied in case A(3.1)
and Procedure 4.5 is applied in case A(3.2). Using arguments similar .
to those in the proofs of Theorems 4.3 and 4.4, it can be proved that
Procedures 4.4 and 4.5 detect f(Ij/Ik) in this case.

Case B(3.2): D(Ij) = D(Ik)' Note that Z(Ij) = Z(Ik) = K, and
Z(D(Ij)) = z(D(Ik)) = K-1. Therefore no instruction in the READ (D(Ij))

. sequence can have a label greater than K-1. This case is illustrated in

Figure 4.4. Note that READ (D(I.)) = (I s I s ey Ip Y where
J Pr-1 Pr-2 1
. E(Ip ) =1, for 1 =i S K-1. Depending on z(S(Ik)) the case can be further
f - i
. divided into two subcases. Case B(3.2.1) applies when I(S(Ik)) < K, and

Shiab) €T A o ainm i

case B(3.2.2) applies when z(S(Ik)) = K. Note that 2(S(Ik)) 7 K,
since Z(Ik) = K and Ik belongs to class T. (Also refer to the labeling
algorithm given in Section 4.1.) %

Case B(3.2.1): Z(S(Ik)) < K. In this case the instruction Ik

|

does not belong to the READ (S(Ik)) sequence. (This will be proved in i

the proof of Theorem 4.8.) if
!

Procedure 4.9:

This procedure is applicable for case B(3.2.1). It generates
= = > =
tests to detect fault f(Ij/Ik) when z(Ij) z(Ik) K 23, D(Ij) D(Ik)’

and l(S(Ik)) < K.

Step 1: Store OPERAND lin S(Ij) and OPERAND 2 in S(Ik) such that
OPERAND 1 # OPERAND 2.

Step 2: Execute Ij.
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L Read (D(I}))
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Figure 4.4. 1Illustrating case B(3.2) in Section 4.3.3.3.
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Step 3: Read out S(Ik) by executing READ (S(Ik)).

/Expected output data = OPERAND 2/

aint-A e

Step 4: Read out D(Ij) by executing READ (D(Ij)).

1 /Expected output data = OPERAND 1/ [

Theorem 4.8: Procedure 4.9 detects f(Ij/Ik) in case B(3.2.1).
Proof: ©Note that Z(Ik) = K. Since Z(S(Ik)) < K, no instruction in
the READ (S(Ik)) sequence can have a label greater than K-1, implying that
I, £ READ (S(Ik)). Therefore READ (S(Ik)) reads out S(Ik) without
routing it through D(Ij) = D(Ik).
- When the microprocessor under test executes this procedure, it
“ has already executed the tests required to detect f(Ip/¢), f(Ip/Iq),
and f(Ip/Ip+Iq) where 1 < 2(Ip), Z(Iq) < k-1, and f(Iv/Iv+iw) where
1= Z(IV) £ K-1 and Z(Iw) = K. Therefore, when the microprocessor under

test executes this procedure it has already been checked that the

READ (D(Ij)) and READ (S(Ik)) sequences correctly read out D(Ij) and S(Ik)’
respectively. (Recall that no instruction in the READ (D(Ij)) or

READ (S(Ik)) sequences can have a label greater than K-1.) Moreover,

after the execution of these sequences the contents of D(Ij) and S(Ik)

do not alter.

In step 2, Ij is executed and it is expected to produce OPERAND 1
in D(Ij). If f(Ij/Ik) is present, OPERAND 2 will be produced in D(Ij)
instead of OPERAND 1, provided S(Ik) really contained OPERAND 2 when Ij
is executed. In this situation the fault will be detected in step 4.

(Note that in step 3, READ (S(Ik)) reads out S(Ik) without routing it
through D(Ij) = D(Ik)-) On the other hand, due to faults involved in the

instructions used to write data in S(Ik)’ OPERAND 2 may not be stored
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in S(Ik); in this case the fault will be detected in step 3 itself. a

Case B(3.2.2): z(S(Ik)) = K. In this case Ik £ READ (S(Ik)).

Procedure 4.9 used for case B(3.2.1) cannot be used in this case

because in step 3, READ (S(Ik)) will read out S(Ik) by routing it through
D(Ij) = D(Ik), destroying its contents.

Procedure 4.10:

This procedure is applicable for case B(3.2.2). 1t

generates tests to detect fault f(Ij/Ik) when 2(Ij) = 4(1,) = K23,

k
D(T;) = D(L,), and 2(s(r, )) = k.
Step 1: Store OPERAND 1 in S(Ij) and OPERAND 2 in S(Ik) such that
OPERAND 1 # OPERAND 2.
Step 2: For i « 1 TO K DO
BEGIN
Execute Ij;
Read out D(Ij) by executing READ (D(Ij)).
/Expected output data = OPERAND 1/
END
Step 3: Execute L.
Step 4: Read out D(I,) by executing READ (D(I,)) = READ (D(Ij)).

/Expected output data = OPERAND 2/ -

Theorem 4.9: Procedure 4.10 detects f(Ij/Ik) in case B(3.2.2).

Proof: 1In step 2 of Procedure 4.10, register D(Ij) is read

{ ., I. 7. (Refer to

out by executing READ (D(I,)) = \Ip s Ip , e 0

J K-1 K-2 1

Figure 4.4.) Recall that 2(Ij) = l(Ik) = K, and :’/(Ip y =i, for
i

1 =i £ K-1. When the microprocessor under test executes this procedure,
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it has already been checked that f(Ip/¢), f(Ip/Iq) and f(Ip/Ip+iq) do ((
not exist, where 1 < l(Ip), ﬂ(Iq) < K-1. Therefore, D(Ij) can be correctly {j{
read out by executing READ (D(Ij))- ;E
If OPERAND2 is really stored in S(Ik) in step 1, the fault &

f(Ij/Ik) wiil be detected when D(Ij) is read out during the first 5‘

iteration of step 2, since OPERAND 2 will be read out instead of OPERAND 1.

On the other hand, due to the faults involved in instructions used to EJJ

write data in S(Ik), OPERAND 1 may have been stored in S(Ik). In this
situation the fault will not be detected during the first iteration of
step 2. We now prove that it is necessary and sufficient to repeat the
loop in step 2 K times, where IREAD (D(Ij))l = K-1.

Sufficiency: So far the microprocessor under test has not
executed the tests to detect f(Iv/Iv+Iw), where 1 S E(IV) < K-1 and

<4 < . 1
K+1 (Iw) K ax If a fault f(Ipi/Ipi + Ipi ) is present, where
Ip € READ (D(Ij)) and kK+1 = E(Ip,) s Kmax’ it has yet not been detected.
i i
Consider a sequence of instructions I _, , I, , ..., I ,» where I_,
Pg-1  Pr-2 Py i
belongs to this sequence if and only if the fault f(Ip /T + IP,) is
: i i i
present, for 1 € i < K-1. Since K+1 = £(1I_,) =K and K 2 3, I,
Pi max Pi
belongs to class T according to our assumption in Section 4.3.1.

Therefore, we designate the sequence (I , , I, , ..., I ,) as the T ?
- P p :
k-1 K-2 1
sequence ¢'. Note that there are at most K-1 instructions in o'. Thus
when the READ (D(Ij)) sequence is executed in step 2, the T sequence o'
is also executed in addition. Consider the register which is l-step

transferrable to S(Ik) under the T sequence J'. The contents of this

register before the execution of READ (D(I,)) in the first iteration of

J

step 2 will become the final contents of S(Ik) at the end of the first
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iteration of step 2. This may alter the contents of S(Ik).

During the first K-1 iteratioms of step 2 READ (D(Ij)) is
executed K-1 times, and so is the T sequence o'. If register S(Ik)
contains OPERAND 1 at the end of each of i iterations of step 2,
(i.e., at the end of each of i executions of the T sequence ¢', for

h .
execution of

1 £1i S K-1), then by Corollary 2.3, at the end of the K'
the T sequence ', S(Ik) will contain OPERAND 1. Recall that there are

at most K-l instructions in the T sequence ¢'. If this is so, the

fault will be detected in step 4 as OPERAND L # OPERAND 2 will be read

out.

On the other hand, if at the end of any of the first K-1 iterations
of step 2, S(Ik) contains data different from OPERAND 1, the fault will be
detected in the next iteration of step 2 when D(Ij) is read out by
executing READ (D(Ij)), as the output data will be different from OPERAND 1.

Necessity: Let the loop in step 2 be repeated only p times,
where 1 < p = K-1. (Recall that R.2 3.) Consider the register which is
p-step transferrable to S(Ik) under the T sequence 7'. Since there can
be as many as K-1 imstructions in o', such a register can exist (from
Theorem 2.1). If this register contains OPERAND 2, and S(Ik) and each
register which is j-step transferrable to S(Ik) (1 = j = p-1) under the
T sequence ¢' contains OPERAND 1 at the beginning of the first iteration
of the loop,  then the contents of S(Ik) will be equal to OPERAND 1 at the
end of each of i iterations of the loop, for 1 € i < p-1, and they will

become OPERAND 2 at the end of the pth iteration of the loop. (Refer to

Corollary 2.1.)
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Therefore, OPERAND 1 will be read out during each of p iterations
of the loop in step 2, and OPERAND 2 will be read out in step 4, as expected.
Thus the fault may remain undetected if the loop in step 2 is repeated less

than K times. ]

4.3.4. Test Generation for f(l./I.+Ikl
[ R

The details of test generation depend on Z(Ij) and i(Ik)-
We consider six cases, namely, case C(l) through case C(6). The suffix C
is used to denote that a case belongs to the details of test generation
for f(Ij/Ij+Ik). These cases are divided into subcases which are listed
in Table 4.3. For each case, the table gives which test generation

procedure is applicable and which theorem proves the fault coverage.

4.3.4.1. Test Gemeratiom for f(Ijlljjlk) When l(lj) = (1) =1
n

This case is referred to as case C(1). As in the case B(l.2), many
faults in this case would be readily detected because Ij and Ik have the
ﬁighest observability. This case can be divided into two subcases, namely
case C(l.1) and case C(l.2), exactly in the same way case B(l.2) was divided
into case B(l.2.1) and case B(1.2.2). (Refer to Section 4.3.3.1.) The tests
generated by Procedure 4.11 for case C(l.l) are to be applied before those
generated by procedures for case C(1.2).

Case C(1.1): During the execution of Ij and Ik the results of
the operation performed are "read out".

Procedure 4.11:

This procedure is applicable for case C(l.1). It generates
tests to detect f(Ij/Ij+¢k) when Z(Ij) = Z(Ik) = 1 and during the execution

of Ij and Ik the results of the operations are read out.
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If possible, store proper operands in S(Ij) and S(Ik) such that

when Ij is executed RESULT 1 is read out and when Ik is executed

RESULT 2 is read out, and (RESULT 1) V (RESULT2) # (RESULT1).

/V denotes the bit-wise logical OR function/

_Execute Ij. /Expected output data = RESULT 1/

Execute I, . /Expected output data = RESULT2 /

If possible, store proper operands in S(Ij) and S(Ik) such that
when Ij is executed RESULT 3 is read out and when Ik is executed
RESULT 4 1is read out, and (RESULT 3 ) A (RESULT 4) # (RESULT 3).
/A denotes the bit-wise logical AND function/

Execute Ij' /Expected output data = RESULT 3/

Execute I, . /Expected output data = RESULT 4/

The underlined phrase "if possible' in steps 1 and 4 may
come as a surprise. However, it may not be possible to satisfy conditions
given in both the steps due to the nature of the operations performed
under the instructions Ij and Ik. The following example illustrates the
point.

Example 4.10: Let instruction Ij be "Store the contents of

register R, into the main memory location (next to the one containing

1

the opcode of instruction Ij),”

and instruction I, be "Perform the logical

k

AND of the contents of registers R, and R2 and store the result into the

1

main memory location.'" The requirement in step 4 of Procedure 4.11 can be

satisfied by storing a ONE in R1 and a ZERO in R2 so that under Ij a ONE

is read out and under 1k a ZERO is read out, and (ONE A ZERO) = ZERO # ONE.
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On the other hand, no operands wculd satisfy the requirement
in step 1. This can be easily proved. Let OPERAND 1 and OPERAND 2 be
stored in R1 and R2 respectively. Ij will read out RESULT 1 = OPERAND 1
and Ik will read out RESULT 2 = (OPERAND 1) A (OPERAND 2) . 1If f(Ij/Ij+1k)
is present, then as illustrated in Example 3.2, (RESULT 1) * (RESULT2)
would be read out, where * denotes the bit-wise logical AND or OR function

depending on technology. In this situation, if * is the OR function, Ij

would read out (RESULT 1) V (RESULT2) = (OPERAND 1) / ((OPERAND 1) A

(OPERAND 2)) = OPERAND 1 = RESULT 1, as expected. Thus, the fault

(1

E(Ij/Ij+Ik) is an undetectable fault.

Theorem 4.10: Procedure 4.11 detects all detectable

f(Ij/Ij+Ik) faults in case C(l.1).

Proof: 1If the proper operands as required by the condition in :Q
step 1 are really stored in S(Ik)’ and f(Ij/Ij+Ik) causes the actual 3
result read out under instruction Ij to be the bit-wise logical OR ;i
combination of RESULT 1 and RESULT 2, the fault will be detected in step 2

as (RESULT 1)V (RESULT2) # RESULT 1 will be read out. On the other hand,

under faults involved in the instructions used to store data in S(Ik),

wrong operands may have been stored in S(Ik) in step 1. In this situation

k

(Recall the fault model in Section 3.2; if f(Ij/Ij+Ik) exists, I, is

correctly executed.) Steps 4, 5, and 6 detect the fault if f(Ij/Ij+Ik)

the fault will be detected not in step 2 but in step 3 when I, is executed. |

causes the actual result read out under instruction Ij to be the bit-wise F

logical AND combination of RESULT 1 and RESULT 2. 7
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Case C(1.2): During the execution of instructions Ij and Ik
’ the results of the operations performed are stored in registers. (The 1

results are not read out as in case C(l.1).) This case is identical to
' case B(1.2.2), and all the points illustrated in Example 4.7 do apply
: here too. Depending on whether the results of Ij and Ik are stored in
the same or different registers we divide this case into two subcases,
! namely, case C(1.2.1) and case C(1.2.2), exactly in the same way

case B(l.2.1) was divided into case B(l.2.1.1) and case B(l1.2.1.2).

Case C(1.2.1): The results produced by executing instructions

Ij and Ik are stored in the same register. Let this register be
designated as Rp; furthermore let READ (Rp) = (Ip3. Note that i(Ip) = 1.
= (Refer to Example 4.8.) In this case we follow Procedure 4.7 given for
case B(1.2.2.1), except for two modifications:
1. In step 1 of Procedure 4.7, RESULT 1 and RESULT 2 should
satisfy the condition (RESULT 1) Vv (RESULT2 ) # RESULT 1. i
2. Step 1 through step 5 of Procedure 4.7 are repeated, and RESULT 1

and RESULT 2 should satisfy the condition (RESULT 1) A (RESULT2) # RESULT 1.

! It can be easily proved that the procedure detects f(Ij/Ij+Ik)

in this case by following the similar arguments used in the proofs of
Theorems 4.6 and 4.10.

Case C(1.2.2): The results produced by executing instructions

Ij and Ik are stored in different registers. Let the result produced by ;

I, be stored in register Rp' Furthermore, let READ (RP) = <Ip>. Note i

k
that £(I ) = 1.
( p
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Procedure 4.12:

This procedure is applicable for case C(l1.2.2). It

=

generates tests to detect fault f(Ij/Ij+Ik) when l(Ij) = Z(Ik) = 1, and

during the execution of Ij and I, the results of the operations are stored

[

k

in different registers.

Step 1: Store OPERAND 1 in register RP and proper operands in S(Ik) such that }

Rl L S

when I, is executed RESULT 1 is stored in RP and RESULT 1 # OPERAND 1. 1

k
Step 2: Read out register Rp by executing READ (Rp) = (Ip).

/Expected output data = OPERAND 1/
Step 3: Repeat step 2.

Step 4: Execute Ij'

Step 5: Read out register Rp by executing READ (Rp) = <Ip>.

/Expected output data = QPERAND 1 # RESULT 1/ a

Theorem 4.11: Procedure 4.12 detects f(Ij/Ij+ Ik) in

case C(1.2.2).

The proof of this theorem follows closely that of Theorem 4.6

and will not be repeated here. O

4.3.4.2. Test Generation for f(Ij£;j+Ikl*When lﬁlj) =1
and 4(T ) = 2
K

This case is referred to as case C(2). We divide this case
into various subcases, namely, case C(2.1) through case C(2.4), depending
on whether D(Ik) < S(Ij) and whether during the execution of Ij the result
of the operation performed under Ij is read out. Tests generated for

case C(2.1) and case C(2.2) are to be applied before those for case C(2.3)

and case C(2.4).
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Case C(2.1): D(Ik) c S(Ij), and the result of the operation
performed under Ij is read out during its execution. An example of this
case is given below.

Example 4.11: Instruction Ij is "Push the contents of the
accumulator on the top of a LIFO stack maintained in the main memory,"
and instruction I, is "Transfer the contents of register R, to the
accumulator.” In general, Ij may perform some operation on its operands

and then read out the result. I

Procedure &4.13:

This procedure is applicable for case C(2.1). It generates
tests to detect f(Ij/Ij+Ik) when £(Ij) =1, Z(Ik) =2, D(Ik) < S(Ij), and
the result of the operation performed under Ij is read out during its
execution.

Step 1l: Store proper operands in S(Ij) such that when Ij is executed
RESULT 1 is read out. Store proper operands in S(Ik) such that
when I, is executed, it changes the contents of D(Ik) so that if

k

Ij is executed after I, , RESULT2 # RESULT 1 will be read out.

K’

Step 2: Execute Ij. /Expected output data = RESULT 1/

Step 3: Repeat step 2. /Expected outpué data = RESULT 1 # RESULT2/

Step 4: Execute Ik.

Step 5: Execute Ij' /Expected output data = RESULT 2/ o
Theorem 4.12: Procedure 4.13 detects f(Ij/Ij+{k) in case C(2.1).
Proof: If the proper operands as required in step 1 are really

stored in S(Ik) the fault will be detected in step 3, because RESULT 2 will

be read out instead of RESULT 1. 1f proper operands are not stored in

S(Ik) due to the faults in instructions used to write data in S(Ik), the




fault may not be detected in step 3, but it will be detected in step 5

because the output data will then be different from RESULT 2. 4
Case C(2.2): D(Ik) ¢ S(Ij) and the result of the operation
performed under Ij is read out during its execution.

Procedure 4.14:

This procedure is applicable for case C(2.2). It generates
: + y/ = Y/ =
tests to detect fault f(Ij/Ij Ik) when (Ij) 1, (Ik) 2, D(Ik) ¢ S(Ij)’
and the result of the operation performed under Ij is read out during its
execution.

Step 1: Store proper operands in S(Ik) and OPERAND 1 in D(Ik) such that

when I, is executed it produces RESULT 1 # OPERAND 1 in D(Ik).
Step 2: Execute Ij‘
Step 3: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND 1/
Step 4: 1If Z(S(Ik)) 2 2 then repeat steps 2 and 3 else go to step 5.
Step 5: Execute Ik.
Step 6: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = RESULT 1 # OPERAND 1/ =

Theorem 4.13: Procedure 4.14 detects f(Ij/Ij+{k) in case C(2.2).

Proof: If the proper operands as required in step 1 are really
stored in S(Ik) the fault f(Ij/Ij+Ik) will be detected in step 3 because
RESULT 1 # OPERAND 1 will be read out. On the other hand, if proper
operands are not stored in S(Ik) because of faults in the instructions
used to store data in S(Ik), OPERAND 1 may be produced in D(Ik) when Ik is

executed. In this situation step 3 will not detect the fault f(Ij/Ij+Ik)'

The necessity for step 4 is now explained.

— e it s
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At this stage the microprocessor under test has not executed
the tests to detect f(Ip/Ip+Iq) where E(Ip) = 1 and Z(Iq) =23, 1f
f(Ip/Ip+Iq) is present and D(Iq) < S(Ik) (requiring Z(S(Ik)) z 2), then
the execution of READ(D(Ik)) in step 3 may cause a change in the
contents of S(Ik) due to the additional execution of Iq. This will be
detected in step 4 as the output data will be different from OPERAND 1.
On the other hand, if the contents of S(Ik) remain unchanged after step 3
they will remain unchanged after step 4 also. 1In this situation the
fault will be detected in step 6 as the output data will be different

from RESULT 1. .|

Case C(2.3): The results produced during the execution of
Ij and Ik are stored in the same register. (The result of the operatiom
performed under Ij is not read out, as in case C(2.1) or case C(2.2).)
Let this register be designated as Rp; furthermore let READ (RP) = (Ip}.
Note that l(Ip) = 1. (This is consistent with our discussion in

Example 4.7.)

Procedure 4.15:

This procedure is applicable for case C(2.3). It generates
tests to detect fault f(Ij/Ij+Ik) when Z(Ij) =1, Z(Ik) = 2, and the results

produced during the execution of Ij and I, are stored in the same register

k

designated as Rp.

Step 1: If possible, store proper operands in S(Ij) and S(Ik) so that
when Ij is executed RESULT 1 is produced in RP and when Ik is
executed RESULT 2 is produced in Rp, and (RESULT 1) VvV (RESULT2)
# (RESULT 1),

Step 2: Execute Ij-
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'Steg 3: Read out Rp by executing READ (Rp) = (IP>.

/Expected output data = RESULT 1/
Step 4: 1If Z(S(Ik)) 2 2 then repeat steps 2 and 3 else go to step 5.
Step 5: Execute I, .
Step 6: Read out Rp by executing READ (Rp) = (Ip).
/Expected output data = RESULT 2 /
Step 7: Repeat step 1 with the change that (RESULT 1) A (RESULT 2)
# (RESULT 1).

Step 8: Repeat steps 2 through 6.

(-l

Theorem 4.14: Procedure 4.15 detects f(Ij/Ij+Ik) in

case C(2.3). = T

The proof of this theorem follows closely those of Theorems
4.10 and 4.13, and hence is not given.

Case C(2.4): The results produced during the execution of
Ij and I, are stored in different registers.

k

Procedures 4.16:

This procedure is applicable for case C(2.4). It
generates tests to detect fault f(Ij/Ij+Ik) when l(Ij) =1, ﬂ(Ik) =2,
and the results produced during the execution of Ij and Ik are stored in
different registers.
Step 1: If possible, store proper operands in S(Ik) and OPERAND 1 in D(Ik)
so that when Ik is executed RESULT 1 is produced in D(Ik) and
RESULT 1 # OPERAND 1.

Step 2: Execute Ij.
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Step 3: Read out D(Ik) by executing READ (D(Ik))-

/Expected output data = QPERAND 1/
Step 4: 1If Z(S(Ik)) 2 2 then repeat steps 2 and 3 else go to step 5. ]
Step 5: Execute I
Step 6: Read out D(Ik) by executing READ (D(Ik))-

/Expected output data = RESULT 1/ C

Theorem 4.15: Procedure 4.16 detects f(Ij/Ij+Ik) in
case C(2.4). =

The proof of this theorem follows the arguments given in the

proof of Theorem 4.13, and hence is not given.

4.3.4.3. Test Generation for fngLLj+Ik) When z(Ij) = 1(1k2,= 2
This case is referred to as case_C(3) and is divided into two
subcases, namely, case C(3.1) and case C(3.2) depending on whether or
not D(Ij) = D(Ik)-
Case C(3.1): D(Ij) = D(Ik). The basic requirement of test
generation in this case is to store proper operands in S(Ij) and S(Ik) such
that if Ij is executed it produces an x € {0,1} in some bit (say the pth bit)

of D(Ij), and if I, is executed it produces X in the same bit of D(Ij).

k
When Ij is executed x * x will be produced in the pth bit of D(Ij), if
f(Ij/Ij+Ik) is present. (* denotes the logic AND or OR function.) Note
that x * x # x, for x = 1 and * = AND, and for x = 0 and * = OR. Thus,

if D(Ij) is read out after executing Ij the fault will be detected.

TN

If D(Ij) & s(Ij) and D(Ij) % S(Ik)’ no specific data need to be

stored in D(Ij) in order to satisfy this requirement. On the other hand
h

if D(Ij) = S(Ij) or D(Ij) = S(Ik)’ in order to produce an x in the pt
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bit of D(Ij) when Ij is executed, and to produce x in the pth bit D(Ij)

when Ik is executed, it may be required that some specific logic value

must be stored in the pth bit of D(Ij). If x must be stored in the pth

bit of D(Ij), the situation is referred to as "situation A"; if X must

be stored in the pth bit of D(Ij), the situation is referred to as

"situation B." The following example should clarify these two situations.
Example 4.12: Suppose instruction Ij is "Transfer the contents

of register R, to register R,," and instruction I, is "Perform the

1 2° k

logical AND operation on the contents of register R2 and R3, and store

the result in Rz.“ Instructions Ij and Ik are represented in a graph in

Figure 4.5. We must store x = 0 in the pth bit of Rl’ and x = L in the
pth bit of both R2 and R3, so that if Ij is executed x = 0 is produced

h

in the pth bit of R,, and if Ik is executed x = 1 is produced in the pt

2,

bit of R2' Thus, this is an example of what we have referred to as
situation B. An example of situation A can be easily obtained by simply

renaming instruction Ij as I, and vice-versa, and letting x = 1. 3

k

We now present two subprocedures to be used in these two
different situations. Followed by this we will present Procedure 4.17
(which is a test generation procedure for case C(3.1)) which calls
Subprocedure A (as a subroutine) when situation A is present and calls
Subprocedure B when situation B is present.

Subprocedure A:

This procedure is called as a subroutine by Procedure 4.17

when situation A is present.




Figure 4.5. Illustrating Example &4.12.
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D!

Step 1: Execute Ij.
Step 2: Read out D(Ij) by executing READ (D(Ij)).
/The pth bit of the output data = x/
Step 3: If i(S(Ik)) 2 2 then repeat steps 1 and 2 else go to step &.
3tep 4: Execute I, .

k
Step 3: Read out D(Ij) by executing READ (D(Ij)).

]

/The pth bit of the output data = x/

3

Subprocedure B:

This procedure is called as a subroutine by Procedure 4.17

when situation B is present.

Step 1: Execute Ik.
Step 2: Read out D(Ik) by executing READ (D(Ik)),
/The pth bit of the output data = x/
Step 3: 1If Z(S(Ik)) 2z 2 then repeat steps 1l and 2 else go to step &.
Step 4: Execute Ij'
Step 5: Read out D(Ij) by executing READ (D(Ij)).

/The pth bit of the output data = x/ o

Procedure 4.17:

This procedure is applicable for case Z(3.1) and
case B(2.2). It generates tests to detect fault E(Ij/Ij+Ik) when Z(Ij)

= = Vo= - =
z(Ik) 2 and D(Ij, D(Ik), and fault f(Ij/Ik) when Z(Ij) £(1 2 and

k)

D(Ij) = D(Ik)-

FOR i< 1T0O 2 DO

BEGIN
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Step 1: TIF i = 1 THEN x « O ELSE x « 1.

Step 2: If possible, store proper operands in S(Ij) and S(Ik)
such that if Ij is executed it produces x in some bit
(say the pth bit) of D(Ij), and if Ik is executed it
produces X in the pth bit of D(Ij).

Step 3: 1If step 2 requires x to be stored in the pth bit of D(Ij)
then execute Subprocedure A else execute Subprocedure B.

END.

Note that if D(Ij) ¢ S(Ij) and D(Ij) P S(Ik)’ then as mentioned
earlier no specific data need to be stored in D(Ij) in step 2 of
Procedure &4.17. Therefore strictly speaking either of the subprocedures
could be called in step 3 when D(Ij) % S(Ij) and D(Ij) & S(Ik).

Theorem 4.16: Procedure 4.17 detects f(Ij/Ij+Ik) in case C(3.1)
as well as f(Ij/Ik) in case B(2.2).

Proof: 1In step 2, proper operands are chosen in S(Ij) and
S(Ik) to produce x in some bit (say the Dth bit) of D(Ij), if Ij is

k
1f f(Ij/Ij+Ik) is present, x * x will be produced in the pth bit of D(Ij),

executed, and to produce ; in the same bit of D(Ij), if I, is executed.

when Ij is executed. If f(Ij/Ik) is present X will be produced in the
pth bit of D(Ij)' The first iteration of the FOR loop is for detecting the
fault if * denotes the OR function, and the second iteration of the loop
is for detecting the fault if * denotes the AND functiom.

Without loss of generality we assume that * denotes the OR
function and situation A exists. Therefore in step 3, Subprocedure A is

executed as a subroutine. If proper operands are really stored in S(Ik)

in step 2 of Procedure 4.17, the fault will be detected in step 2 of
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Subvprocedure A when D(Ij) is read out. On the other hand, proper operands
may not be stored in S(Ik) due to faults involved in instructions used to
write data in S(Ik)- In this case the fault will not be detected in step 2
of Subprocedure A. The microprocessor under test has not yet executed
tests to detect f(Ip/Ip+Iq) where Z(IP) = 1 and Z(Iq) 2 3. Therefore the
execution of READ (D(Ij)) in step 2 of the subproiedure may cause
additional execution of an instruction Iq such'Eﬂat 2(Iq) 2 3 and D(Iq)

< S(Ik)' If this changes the'contents of S(Ik) the fault may be detégped)

in step 3 of the subprocedure, otherwise it will be detected in stép 5.

(Refer to the details of the proof of Theorem 4.13.) C

Case C(3.2): D(Ij) # D(Ik). In this case we follow the

procedure below.

Procedure 4.18:

This procedure is applicable for case C(3.2). It

generates tests to detect fault f(Ij/Ij+Ik) when 2(Ij) = ﬂ(Ik) = 2 and

D(Ij) # D(Ik). F

Step 1: Store proper operands in S(Ik) and OPERAND 1 in D(Ik) such
that when Ik is executed it produces RESULT 1 in D(Ik)’
and RESULT 1 # OPERAND L. 1If z(s(Ik)) = 1, read out S(Ik) by
executing READ (S(Ik)).
/To make sure that S(Ik) contains expected operands/
P Step 2: Execute Ij.
Step 3: Read out D(Ik) by executing READ (D(Ik))'
F /Expected output data = OPERAND 1 # RESULT 1/

Step 4: If l(S(Ik)) = 2 then repeat steps 2 and 3 else go to step 5.
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Step 3: Execute Ik.
Step 6: Read out D(Ik) by executing READ (D(Ik))'

/Expected output data = RESULT 1/ 3

Theorem 4.17: Procedure 4.18 detects f(Ij/Ij+Ik) in
case C(3.2).

Proof: We will give only the sketch of the proof since the
basic ideas are essentially the same as used in the proofs of Theorem 4.10
through 4.17. If prope. operands are really stored in S(Ik) in step 1
the fault will be detected in step 3, since RESULT 1 will be read out.
On the other hand, if proper operands are not stored in S(Ik) due to
faults in instructions used to write data in S(Ik)’ the fault will be
detected either in step 1 (if Z(S(Ik)) = 1) when S(Ik) is read out, or

-
—

in step 4 or 6.

4.3.4.4. Test Generatioun for f(IjLijik)_when Z(Ij) = Z(Ik) =K 23
This case is referred to as case C(4). Note that according
to the assumption in Section 4.3.1, instructions Ij and Ik belong to class T.
When the microprocessor executes the tests to detect faults f(Ij/Ij+1k),
) = K 2 3, it has already executed the tests to detect

k
faults f(Ip/Ip+Iq) where 1 s Z(Ip) S K-1 and 2(Iq) < 2, in particular it has

where 1(Ij) = (1

been already checked that the execution of any instruction of label 3= K-1
will not give rise to the additional execution of any instruction of class M.
(Recall our assumption in Sectiom 4.3.1 that if Ij belongs to class M,

Z(Ij) S 2.) We divide this case into two subcases depending on wnether

or not D(Ij) = D(Ik).
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Case C(4.1): D(Ij) = D(Ik). Since Z(Ij) = Z(Ik) = K,
Z(D(Ij)) = K-1. This case is illustrated in Figure 4.4, where depending
on 2(S(Ik)) this case can be further divided into two subcases.
Case C(4.1.1) refers to E(S(Ik)) < K, and case C(4.1.2) refers to I(S(Ik)) = K.
Nete that E(S(Ik)) ? K, since E(Ik) = K and Ik € class T. (Refer to the

labeling algorithm given in Section 4.1.)

Case C(4.1.1): Z(S(Ik)) < K. In this case we follow the

procedure below.

Procedure 4.19:

.

This procedure is applicable for case C(4.1.1). It generates
tests to detect fault £(I./I,+L ) when 2(I.) = £(I,) =K =3, D(1.) = D(I,),
(T /104, (1) = 4@y (1) = (L)

and Z(S(Ik)) < K. This procedure is essentially the same as Procedure 4.9

B RIP TR R e

- executed twice, with the following modifications: During the first

execution of the procedure, in step 1 the condition to be satisfied by 3

PRIV

OPERAND 1 and OPERAND 2 is given by (OPERAND 1) vV (OPERAND 2) # OPERAND 1,

and during the second execution of the procedure the condition to be
satisfied is given by (OPERAND 1) A (OPERAND 2) # OPERAND 1.

Theorem 4.18: Procedure 4.19 detects f(Ij/Ij+Ik) in case C
4.1.1).

Proof: The proof of this theorem parallels closely that of

Vi XA i ke e AL G L o A B 9L L

Theorem 4.8. We will, therefore, stress only those points where they differ.

In step 2 of Procedure 4.19, Ij is executed and it is expected to produce
OPERAND 1 in D(Ij)- If f(Ij/Ij+ik) exists, (OPERAND 1) * (OPERAND 2) would
be produced instead, where as before * denotes the logical AND or OR

function, provided S(Ik) really contained OPERAND 2 when Ij is executed.

In this case the fault will be detected in step 4. On the other hand,
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due to the faults involved in the instructions used to write data in S(Ik),
OPERAND 2 may not be stored in S(Ik); in this case the fault will be

—
4

detected in step 3 itself.

Case C(4.1.2): E(S(Ik)) = K. 1In this case we follow Procedure
4.10 twice, with the same modifications given for case C(4.1.1). We refer to
this modified Procedure 4.10 as Procedure 4.20.

Theorem 4.19: Procedur; 4.20 detects f(Ij/Ij+Ik) in

case C(4.1.2). o

The proof of this theorem follows closely those of Theorem 4.9
and 4.18, and hence is not repeated here.

Case C(4.2): D(Ij) # D(Ik). Depending on Z(S(Ik)) this case
can be further divided into two subcases. Case C(4.2.1) refers to
z(s(Ik)) < K, and case C(4.2.2) refers to E(S(Ik)) = K. Note that

Z(s(Ik)) ? K, since Z(Ik) = K and Ik belongs to class T.

Case C(4.2.1): 1(S(Ik)) < K. 1In this case we use the procedure
below.

Procedure 4.21:

This procedure is applicable for case C(4.2.1). It
generates tests to detect fault f(Ij/Ij+Ik) when I(Ij) = z(Ik) =K 2 3,

D(Ij) # D(Ik), and z(s(zk)) < K.

Step 1: Store OPERAND 1 in S(Ik) and OPERAND 2 in D(Ik), such that
OPERAND 1 # OPERAND 2.
Step 2: Read out S(Ik) by executing READ (S(Ik)).

/Expected output data = OPERAND 1/
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Step 3: Execute Ij.
Step 4: Read out D(Ik) by executing READ (D(Ik)).
/Expected output data = QPERAND 2 / .

Theorem 4.20: Procedure 4.21 detects f(Ij/Ij+ik) in
case C(4.2.1).

Proof: Since I(S(Ik)) < K, no instruction in the READ (S(Ik))
sequence can have label greater than K-1. Also Z(D(Ik)) = K-1, hence
READ (s(Ik)) reads out S(Ik) without routing its contents through D(Ik)'
When the microprocessor under test executes this procedure, it has
already executed the tests to detect f(Ip/¢), f(Ip/Iq), and f(Ip/Ip+Iq)
where 1 < Z(Ip), Z(Iq) £ K-1, and f(Iv/Iv+Iw) where 1 < Z(IV) < K-1 and
Z(Iw) = K. Therefore, in step 2 of this procedure, S(Ik) is correctly
read out to make sure that it stores OPERAND 1, and it continues to store
OPERAND 1 after READ (S(Ik)) is executed. 1In step 3, Ij is executed. If
f(Ij/Ij+Ik) is present, OPERAND 1 will be stored in D(Ik) and the fault

will be detected in step &. o

Case C(4.2.2): 2(S(Ik)) = K. In this case we follow the

procedure below.

Procedure 4.22:

This procedure is applicable for case C(4.2.2). 1t

generates tests to detect fault f(Ij/Ij+Ik) when Z(Ij) = (1 =K 2 3,

k)
D(IJ.) # D(Ik), and z(s(Ik)) = K.

Step 1: Store OPERAND 1 in S(Ik) and OPERAND 2 1in D(Ik), such that

OPERAND 1 # OPERAND 2.




131
Step 2: FOR i « 1 TO K DO
BEGIN
Execute Ij;
Read out D(Ik) by executing READ (S(Ik)).
/Expected output data = QOPERAND 2/
END
Step 3: Execute Ik.
Step 4: Read out D(Ik) by executing READ (D(Ik))'
/Expected output data = OPERAND 1/ =
Theorem 4.21: Procedure 4.22 detects f(Ij/Ij+Ik) in
case C(4.2.2). -

The proof of this theorem follows very closely that of Theorem

4.9 and is not repeated here.

4.3.4.5. Test Generation for ﬁlljlljilk) When 1 < l(Ij) < K,
z(Ik) = K+l, and K 2 2.

This case is referred to as case C(5). Note that Ik 5elongs
to class T because E(Ik) =K+1and K2 2. Since Z(Ij) £ K and Z(Ik) = K+1,
Z(D(Ij)) < K-1 and E(D(Ik)) = K; hence D(Ij) # D(Ik)' We divide this case
into two subcases depending on whether the value of Z(S(Ik)) is less than
K or is equal to K or K+1. Note that it cannot be greater than K+1
because Z(Ik) = K+1 and I belongs to class T.

Case C(5.1): l(S(Ik)) £ K-1. We follow Procedure 4.21 in
this case. Following the arguments similar to those given in the proof
of Theorem 4.20, it can be proved that Procedure 4.21 also detects

f(Ij/Ij+{k) in case C(5.1).

'
+
i
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Case C(5.2): z(S(Ik)) =K or K+1. We follow Procedure 4.22
in this case. Following the arguments similar to those in the proof of
Theorem 4.9, it can be proved that Procedure 4.22 also detects f(Ij/Ij+Ik)

in case C(5.2).

4.3.4.6. Test Ceneration for £(I./I .4l ) When K+1 < 2(1.) £K ,
]I K ] max
and £(I,) = K.
1.9

This case is referred to as case C(6) and is divided into three

subcases depending on the value of K.

~ M . < s
Case C(6.1): 2 l(Ij) Kmax’ and Z(Ik)

fault f(Ij/Ij+Ik) will be readily detected due to the highest observability

1. In this case the

of I,. For example, during the execution of I

K data is transmitted

)
between the microprocessor and the main memory or an I/0 device, or the
logic values on certain status pins are changed (e.g., during the
execution of the "Interrupt enable" instruction). Such is not the case
during the execution of Ij, therefore f(Ij/Ij+{k) will be readily detected
when Ij is executed.

Case C(6.2): 3 = Z(Ij) s Kmax’ and Z(Ik) = 2. The following

procedure is followed in this case.

Procedure 4.23:

This procedure is applicable for case C(6.2). It generates

, + < < yl = 2.
tests to detect fault f(Ij/Ij Ik) when 3 2(Ij) K ax’ and (Ik) 2
Step 1: Store proper operands in S(Ik) and OPERAND 1 in D(Ik) such

k
OPERAND 1 # RESULT 1. If D(Ij) < S(Ik) then store a proper

that when I, is executed RESULT 1 is produced in D(Ik), and

operand in S(Ij) such that when Ij is executed the contents of

D(Ij) will not change. /To ensure that after executing I,

DS TR GRS - ORI I
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the contents of S(Ik) remain unchanged/
Step 2: Execute Ij'

Step 3: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND 1/

Step 4: If E(S(Ik)) 2 3 then repeat steps 2 and 3 else go to step 5.

Step 5: Execute Ik.
Step 6: Read out D(Ik) by executing READ (D(Ik)). ‘

/Expected output data = RESULT 1/ -

Theorem 4.22: Procedure 4.23 detects f(Ij/Ij+{k) in
case C(6.2).
The proof of this theorem is not given as it follows the same
arguments given in the proofs of Theorems 4.10 through 4.17.
= Case C(6.3): K+1 S4(I)) SK.., £(I) =K23. Therefore
according to the assumption in Section 4.3.1, instructions Ij and Ik

belong to class T. In this case the procedure given below is followed.

Procedure 4.24:

This procedure is applicable for case C(6.3). 1t generates
+ +1 = T < =
tests to detect fault f(Ij/Ij Ik) when K+1 l(.k) Kmax’ Z(Ik) K,

and K 2 3.

——

Step l: Store QPERAND 1 in S(Ik) and OPERAND 2 in D(Ik) such that
OPERAND 1 # OPERAND 2. If D(Ij) = S(I,) then store OPERAND 1 i
in S(Ij). /To ensure that after executing Ij’ the contents

of S(Ik) remain unchanged/

Step 2: Execute Ij-




Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND 2. S(Ik) would continue to

store its data after executing READ (D(Ik))’ since

3(s(1,)) = K/

Execute Ik'

Step 5: Read out D(Ik) by executing READ (D(Ik))

/Expected output data = OPERAND 1/

e ——

Theorem 4.23: Procedure 4.24 detects f(Ij/Ij+{k) in

case C(6.3). d

The proof of this theorem is not given as it follows the same

arguments used in the proofs of Theorems 4.10 through 4.17.

- 4.4, Test Generation Procedures for Detecting Faults in the Data Transfer

Function and the Data Storage Function

We motivate the discussion by means of an example. Let

., I, , ..., 1. be a sequence of instructions of class T such that

I Ik

E(Ij ) E(Ij ) PN E(Ij ) form a directed path from the IN node to the
1 2 k .

OUT node in the corresponding S-graph. Let the transfer paths in sets

I

T(I. ), T(I, ), ..., T(I. ) each be w lines in width. Figure 4.6
J1 Js I
illustrates the notation. We propose Procedure 4.25 to detect any fault in

(L., ), T¢I, ), ..., T(I. ), and in registers D(I, ), D(I. ), ..., D(T, )
J1 I2 I 31 12 Je-17-

The fault models for the data storage function and data transfer function

are given in Section 3.3 and 3.4, respectively.

Procedure 4.25:

1. with data 111...1 ; /Write D(I., ) with data 111...1/
I — I <«
w width w width




)= ?1. -
! E(lj,)— B

E(lj.)— Jk 1
Jk-l

FP~-6470

Figure 4.6. 1Illustrating the notation used in Procedure 4.25.
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I

/Expected output data = 111...1/

PR Iy «—
w width
1. with data 11...1 00...0 /Write D(I, ) with data 11...1 00...0/
I —> —> I — —>
w/2 w/2 w/2 w/2
I.;1,; HED /Expected output data = 11...1 00...0/

—P —>
w/2 w/2

Ij with data 11...1 00...0 11...1 00...0
——F > —P ¢—>
1 w/b4 w/b w/b4 w/h

b

/Write D(Ij )- with data 11...1 00...0 11...1 00...0/

1 w/b w/b w/4 w/é

I.,;I,; ...;I,; /Expected output data = 11...1 00...0 11...1 00...0/
) I3 I > ——> —> ——>
w/b w/h w/h w/b

Ij with data 1010...10; /Write D(Ij ) with data 1010...10/

1 +— 1 —s
w w
I,;I,; ...;1I,; /Expected output data = 1010...10/
i 15 I < >
w
Repeat the instructions above with complementary data. i

Theorem 4.24: Procedure 4.25 detects

1) a line in any transfer path in the set T(Ij )y U T(Ij YU...UT(@I., )
1

2 I
stuck at 0 or 1.
2) two or more lines in any transfer path in the set
T(I, YU T@, YU ... UT@A. ) coupled.
Jl 32 Jk
3) a cell of any register in the set D(I, ) U D(I, ) U ... U DI, )
I 32 Ig-1

stuck at 0 or 1.




—~———-
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Proof: If a fault is described by 1 or 3 above, it will be

detected either after the execution of sequence Ijz, Ij3, ceey Ijk when
the expected output data = 11l...1, or after the execution of the sequence
when the expected output data = 000...0.

Procedure 4.25 also detects any fault described by 2, because
at some stage of the procedure any given two lines of a tramsfer path
are required to carry different logic values i.e., x and ;, X e {0,13,
respectively. If these two lines are coupled they will fail to carry
different logic values, and the fault will be detected after the subsequent
execution of the sequence Ijz, Ij3’ - Ijk. O

We define the set of tests in Procedure 4.25 "transfer test set'

and the associated data being routed on the corresponding transfer paths

"transfer test data'. Consider the transfer paths associated with the

instructions of class T. Concentrate on the subgraph of the S-graph
that represents instructions of class T only. We call this subgraph the
T-subgraph. Let P1 be a directed path from the IN node to the QUT node
in the T-subgraph. All the instructions which are represented by edges

constituting path P, are said to be covered by path P,. Let {Pl, Pyy veey P }

1 n

be a set of directed paths from the IN node to the OUT node of the T-subgraph
such that this set collectively covers all the instructions of class T.

It is clear from Theorem 4.24 that if the transfer test data is routed from
the IN node to the OUT node using the transfer test sets consisting of
ingtructions covered by each path in set {Pl, PZ’ ...Pn} any fault in the
transfer paths associated with the instructions of class T, or any fault

in the data storage function will be detected (since the transfer test

data is ""routed" on every edge of the T-subgraph, every node of the graph
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is also visited). i
We need to test the transfer paths associated with the instruc-

tions of class M. Let ”Rio Rj =~ R,'" denote a typical instruction of class M

k
which performs an operation denoted by "o on the contents of register Ri

and Rj’ and stores the result in register R We need to choose a set of

K
proper operands in Ri and Rj such that when the instruction ”Rio Rj - Rk”

is executed it generates and stores data corresponding tc the transfer

test set in Rk' We then need to route these data from Rk to the OUT ncode

by executing READ (Rk). This test ensures that the transfer path from

the data manipulation logic (e.g. the ALU used in executing instruction

"Rio Rj - Rk") to register Rk is fault free. Therefore any result generated
by this instruction can be faithfully transferred to Rk' Consider instruc-
tion I4 in the S-graph of Figure 2.8. We execute Procedure 4.26 to test

the transfer path from the ALU to R (It is assumed that the microprocessor

1
is an 8-bit processor.)
Procedure 4.26:
Il with data 1111 1111 ;
1, with data 0000 0000 ;
I, s
I,
Repeat the tests above with data (1111 0000, 0000 0000), &

(1100 1100, 000C 0000), (1010 1010, 0000 0000), (0000 0000 0000 0000},

(0000 1111, 0000 0000), (0011l 0011, 0000 0000), (0101 0101, 0000 0000). [C

We also need to check that the transfer paths connecting Ri

and Rj to the ALU in the ”Rio Rj - Rk” instruction are fault free. This




asN

ensures that any pair of operands can be applied to the ALU in the

"R;0 Rj - Rk" instruction. For this we need to check that any line in the

i
transfer paths from Ri and Rj to the ALU can be set to O or 1 independent
of the logic values on any other line in these transfer paths. Consider
instruction I4 in Figure 2.8. We wadt to test the transfer paths

1 and R2 to the ALU. We execute Procedure 4.27.

Procedure 4.27:

connecting R

Il with data 0000 0001 ; /R1 stores 0000 0001/

I, with daga 0000 0000 ; /R, stores 0000 0000/

14 5

I, /Expected output data 0000 0001/
1 with data 0000 0010 ; /Rl stores 0000 0010/

12 with data 0000 0000 ; /R2 stores 0000 0000/

14 5

I, /Expected output data 0000 0010/
I, with data 1000 0000 ; /R1 stores 1000 0000/ 1
I2 with data 0000 0000 ; /R2 stores 0000 0000/

14 H

Iy /Expected output data 1000 0000/
I with data 0000 0000 ; /R1 stores 0000 0000/

I2 with data 0000 0001 ; /R2 stores 0000 0001/

14 >

I, /Expected output data 0000 0001/
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I, with data 0000 0000 ; /Rl stores 0000 0000/

Iz with data 0000 0010 ; /R2 stores 0000 0010/

14 H

I, /Expected output data 0000 0010/

I, with data 0000 0000 ; /Rl stores 0000 0000/

1
i, with data 1000 0000 ; /R2 stores 1000 0000/
I4 ;
I, /Expected output data 1000 0000/
Repeat the test above with complementary data. ]

We need to execute tests similar to those given in Procedures
4.26 and 4.27 for every instruction of class M. Finally we must test
the transfer paths associated with the instructioms of class B. This
is accomplished by choosing the set of jump or branch addresses such
that they correspond to the transfer test set for jump, branch, return
from subroutine, etc., instructions. For example, in order to test the
transfer path associated with the jump instruction (instruction 19)
in Figure 2.8 we need to execute Procedure 4.28. It is assumed that the
width of the address bus is 16.

Procedure 4.28:

I, with jump address 0000 0000 0000 0000 ;

9
19 with jump address 0000 0000 1111 1111 ;
19 with jump address 0000 1111 0000 1111 ;
I9 with jump address 0011 0011 0011 0011 ;

I with jump address 0101 0101 0101 0101 ;




l
|
[
|
!
I

Repeat the test above with the complementary set of jump addresses. -

4.5. Test Genmeration Procedure for Detecting Faults in the Data

Manipulation Function

As described in Section 3.5 we assume that complete test sets
are available for detecting faults (for some specified fault model)
in the ALU and other functional units such as a shifter, logic used to
increment the program counter, or the interrupt handling logic. The
orarands specified by such test sets can be provided to a functional
unit using, in general, a sequence of instructions of class T.

Similarly, the result produced by a functional unit can be read out using
a sequence of instructions of class T.

If the logic level description of functional units is available,
test sets can be generated for them using classical fault detection
algorithms based on the stuck-at fault model. On the other hand, if we
do not know the logic level details of the ALU, but know, for example,
that it is realized using an iterative logic array we can generate test
sets for it as explained in [Dias76]. Another approach would be to
generate test sets for functional testing of the ALU, shift, increment,
compare logic, etc., using binary decision diagrams [Aker78].

Even though some faults associated with the instruction
decoding and control function look like faults in the data manipulation
function, and vice versa, the set of faults in one function is not a subset
or superset of the set of faults in the other function. For example,
under a fault in the instruction decoding function an "Add" instruction
may be decoded as a "Subtract" instruction. This fault cannot be

distinguished from a fault in the ALU: however, if the test procedure
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for detecting faults in the instruction decoding and control function
(presented in Section 4.3) is executed correctly, it cannot guarantee the
absence of faults in the ALU. In order to detect a fault in the ALU

or any other functional units we mneed to execute the corresponding test
sets. Similarly if the test procedure for detecting faults in the

data manipulation function is executed correctly, it does not guarantee
the absence of faults in the instruction decoding and control functiom.
For example, whenever an "Add" instruction is executed, it may
additionally activate an instruction that complements a certain register
not involved in the "Add" instruction. Such a fault can be detected by the
test procedure used to detect faults in the instruction decoding and
control function and not by the test procedure used to detect faults in

the data manipulation function.
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5. COMPLEXITY OF THE TEST SEQUENCES

We now determine the complexity of the test sequences generated

by various procedures given in Chapter 4. The complexity is measured
in terms of the number of instructions generated as a function of ng” the

number of registers in set R, or np- the number of instructions in the

instruction repertoire. This will help in exploring the relationship
between the architecture of a microprocessor and the complexity of the
test sequences.

Theorem 5.1: The worst case complexity of the test sequence
generated by Procedure 4.1 is O(n;), where IRI = ng.

Proof: Let us consider the number of instructions that are

generated in steps 3(a), (b), and (c¢) of Procedure 4.1 when there are K

registers in set A, i.e., IAI = K. As a result of the labeling algorithm,
max(E(Ri)) = K' S K for every register Ri of set A. Also, every number in the

integer set {1,2, ceey K'} is assigned as a label to at least one register

sir i st N it bt i

in set A. Therefore, in the worst case, during step 3(b) we need to

generate £(1 + 2 + ... + K) instructions which would read out the registers N

of set A, where IAI = K. Since set A is augmented only by one register ;
-1

during each iteration of step 3, in the worst case, nigl L1 +2 + ... +K)

instructions need to be performed for reading out registers of set A.

n, -1
Similarly, in all iterations of step 3(c), a total of EEl (K + 1) instruc-
tions need to be generated to read out the register at the front of the
queue.

Since there are only np registers, the register that is

""farthest away' from the IN node can be written by executing at most Ny

instructions of class T. Moreover, if this register needs e instructions

i
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to be written into, the '"next farthest away' register will require (nR-l)
instructions, and so on. Therefore when IA[ = K, in the worst case,
np- (K - L) + np- (K - 2) + (nR- 1) + ny instructions are required to write

the registers of a set A during step 3(a). During all iterations of

nR-l
T -(X - 1) +n_-(K - + ...+
step 3(a), a total of KE1 = ng (X ) ng (R - 2) g
instructions are needed to write the registers of set A. Similarly in
n, -1
all iterations of step 3(a), a total of Egl (nR- K) instructions are

needed to write the register at the front of the queue, in the worst case.

When all the terms involved in series are summed up, a total of

n; + 25; s g - 2 instructions are generated. Hence the worst case

complexity of the test sequence is O(ng). 0
It is instructive to illustrate the worst case example which

is shown by a partial S-graph in Figure 5.1. Note that @(ng) complexity

is only for the worst case. For np = 7, 432 instructions are generated

in the worst case. However, for the example microprocessor (where n, = 7)

only 2 x 53 = 106 instructions are generated as shown in Example 4.2.

The exact number of instructions depends on the distribution of integer

labels of the nodes. 1In fact, if all nodes have label 1 (i.e., if the

architecture contains only the so-called accumulators and general purpose

registers which can be directly loaded into and stored from the main

memory), the complexity of the test sequence would be O(ng)- On the

other hand, if the architecture allows scratch-pad registers and on-chip

LIFO stacks, for example, (giving rise to nodes with labels greater

than 1 in the S-graph), the complexity of the test sequence approaches G(né).

It is very difficult to find a closed form solution for the

worst case complexity of the test sequence generated by procedures in




-

O+

Fo=-8471

Figure 5.1. The worst-case example requiring C}(n;) instructiouns
to be generated by Procedure &4.1.
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Section 4.3. We will therefore concentrate on the dominating term in the

worst case complexity calculation. This dominating term can be attributed to

the loop in . tep 2 of Procedures 4.10, 4.20 and 4.22. Let ny be the number

i

of instructions whose edge sets have been labeled i in the S-graph. As

denoted earlier, let Kmax be the maximum value of labels associated with the

ngx .1
2,

i=1 1 @n

edge sets. Thus i n; = n . The dominating term accounts for
i i

i=1
instructions generated by step 2 of Procedures 4.10, 4.20 and 4.22.
If the architecture allows instructions which are represented

by edge sets with labels much greater than 1, the length of the test

sequence could become very large in the worst case, since the complexity

grows exponentially (note the ii factor in the expression above). This is
because instructions represented by edge sets with large labels impart

very poor observability to the architecture, i.e., a large number of
instructions need to be executed to read out internal registers; this is
reflected in the increased length of the test sequences generated by

procedures in Section 4.3. However, the expression above is applicable
-only in the worst case; in many typical architectures Kmax £ 3, deemphasizing
the effect of the dominating term. In fact, if Kmax £ 2 (i.e., the instruction
repertoire contains instructions that store their result in the main memory

or the accumulators and general-purpose registers), Procedures 4.10, 4.20

and 4.22 will not be required at all. In the case of such architectures,

the complexity of the test sequences generated by the procedures given in
Section 4.3 can be approximated to ﬁ(ni) because there are G(ni) faults

(in the instruction decoding and control function) and none of them will

require Procedure 4.10, 4.20 or 4.22 to generate tests for it. Note that no

.other procedure has a loop similar to that in step 2 of Procedures 4.10, 4.20
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and 4.22. Therefore the complexity of test sequences generated by these
procedures can be approximated to G(ni)-

The length of the test sequence generated by various procedures

given in Section 4.4 depends on the widths of data and address buses,

the nature of operation "o'" performed by instructions ”Rio Rj - Rk" of

class M, and the distribution of integer labels associated with edge

sets, i.e., n. and Kmax' If there are many instructions with higher
labels (i.e., large np for larger i), the length of the test sequences 5

i .
required to detect a fault in the data transfer and data storage functions

increases.

For today's microprocessors ne typically ranges from &4 to 32,

while n, ranges from 30 to 200. Note that the complexity of the test
] sequences for detecting faults in the instruction decoding and control
function is at least “(ni), while the complexity of the test sequences b
? for detecting faults in the register decoding function is between
G(ng) and G(ni). Therefore the test sequences used to detect faults in
. the instruction decoding and control function constitute a dominant portiom

of the test sequences for a microprocessor.

l
I
!
I
l
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6. A CASE STUDY

Test sequences were generated for a real microprocessor by applying
the test generation procedures developed in the thesis. The goal of the study
was two-fold. First, we wanted to generate the test sequences to gain insight
into problems involved in using the test generation procedures. We believe that
this is an essential first step towards automating the test generation procedures
which will operate on a given S-graph. Secondly, we wanted to evaluate the fault
coverage of the test sequences for stuck-at faults for a real microprocessor.

A microprocessor from the Hewlett-Packard Company was used. The
HP microprocessor is a single chip, n-channel MOS, 8 bit parallel, control
oriented processor. All instructions and data are transferred in and out
of the microprocessor with an 8 bit bidirectional data bus. Program
addresses are transferred out on an 11 bit address bus. There can be up to
15 1/0 ports. The normal program may be interrupted by use of the
interrupt request control line. The interrupt scheme is fully vectored
with 256 possible vectors. The processor can control external circuits
and check their status through the use of 7 bidirectional control lines.

The microprocessor contains one 8 bit accumulator, one control
logic unit, one 1 bit extend register, sixteen 8 bit registers, one 8 bit
magnitude comparator, one 11 bit program counter, one 11 bit subroutine
stack register, and one 1l bit interrupt stack register. The instruction
set has 187 instructions that includes instructions transferring data
between the memory and the accumulator, between the memory and (sixteen
8 bit) registers, between the accumulator and registers, between the
accumulator and I/0 devices, instructions performing bit manipulations and
magnitude comparisons, instyuctions performing conditional and unconditional

jumps in the program sequencing, etc.
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We adopted the following strategy in applying the test sequences.
Since, as shown in Chapter 5, the test sequences for the instruction
decoding and control function form the dominant portion of the test sequences
for the microprocessor, we first applied the test sequences for the register
decoding function, the data transfer and the data storage function, and
the data manipulation function. The length of these sequences was approx-
imately 1 K instructions. This was followed by application of the test
sequences for the instruction decoding and control function. The length
of these sequences was approximately 8 K instructions. (Recall that there
are 187 instructions in the instruction repertoire.) The test sequences
were generated by using only the information about the instructién set and
organization of the microprocessor.

In order to determine the fault coverage of the test sequences
for stuck-at faults, a detailed gate and subnetwork model of the micro-
processor (obtained from Hewlett-Packard) was used on the TESTAID III fault
simulator. Approximately 2200 single stuck-at faults were simulated. The
test sequences generated were run in segments (since the simulator could
not handle all the tests at one time) and the fault coverage of each
segment was noted. The test sequences for the register decoding, data
storage, data transfer, and data manipulation functions were able to detect
about 907% of all single stuck-at faults. About 67 of the faults gave rise
to simultaneous execution of multiple instructions as described by the
fault model for the instruction decoding and control function. Many of
these faults were subtle and difficult to detect and very elaborate test
sequences were required (accounting for 8 K instructions). For example,

th

when executing the instruction "Skip if the n~" bit of the accumulator is 0"

(with n between 0 and 7), under a particular single-at fault, the above
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instruction will be executed correctly, but at the same time, the contents
of the accumulator are also stored in the nth register. Some examples

of f(Ij/Ij+Ik) faults found in the case study are given in Table 6.1.

(the table lists instructions Ij and Ik-)

The remaining faults (about 4%) were associated with the power-up
and initialization logic, or were undetectable because of redundancies
in the logic, or required invalid opcodes to detect them. Thus for this
particular microprocessor the fault coverage was excellent.

The test generation effort was quite straightforward and we .
believe that it can be automated without much difficulty. The overall
results of the case study were quite promising and we are convinced that
our approach is a viable and effective one for generating tests for micro-

processors.
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Table 6.1. Instructions Ij and Ik for which fault f(Ij/Ij+Ik) exists.

-

Instruction Ij Instruction Ik

Clear the extend bit. Transfer the contents of the accumulator
to register RS'

Return from interrupt Transfer the contents of the accumulator
and enable interrupt. to register Rl'
Clear the third control Disable interrupt.

) flag.

- Skip if the first Enable interrupt.

control flag is zero.

Clear the first bit of Clear the zeroth bit of the accumulator.
the accumulator.
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7. CONCLUDING REMARKS

7.1. Summary of Thesis

The purpose of this research has been to develop test generation
procedures for testing microprocessors that would treat the microprocessor
organization and instruction set as parameters. The test generation
effort is assumed to be in a user environment where the gate and flip-flop
level details of the microprocessor are not known. The procedures will
generate tests which can be assembled into valid machine instructions.

The microprocessor under test executes these instructions which are stored
in the memory of an external tester which continually monitors all the
input and output pins of the microprocessor. A fault is detected when the
data on any output pin is different from the expected data.

In Chapter 2, ‘he instruction repertoire of the microprocessor
was divided into three classes (T, M, and B). Then a graph-theoretic
model for microprocessor (called the S-graph) was developed. Each register
is represented by a node in the S-graph and data flow involved during the
execution of an instruction is represented by a set of directed edges.

The motivation behind this approach was to be able to construct a model

for the microprocessor for test generation purposes using only the informa-
tion available in the typical user's manual. This is because the gate and
flip-flop level information needed to construct a model at the logic level
is not only unavailable, but classical test generation methods which go
hand in hand with the logic level model will be very complicated and
expensive due to the very large number of gates and flip-flops on the
microprocessor chip.

Functional level fault models describing faulty behavior in the

register decoding function, instruction decoding and control function, data
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transfer function, and data manipulation function were presented in Chapter 3.
Various underlying fault mechanisms responsible for functional level faults
were pointed out. The fault models are quite independent of the details
of implementation. The effects of faults on the behavior of the micro-
processor were described at the level of the S-graph.

In Chapter 4, test generation procedures were given to detect
faults in the fault models. The first step in test generation is to
assign integer labels to the nodes and edges of the S-graph by using the
labeling algorithm given in Section 4.1. The label assigned to a node
indicates the shortest ''distance' of that node to the OUT node (in terms
of the instructions of class T or B); the label assigned to the edge set
representing an instruction is directly derived from the label assigned to
its destination register.

Test generation procedures presented in the subsequent sections
of the chapter take full advantage of the information obtained from these
labels; tests are generated in such a way that the knowledge gained from
the correct execution of tests used for checking the decoding of registers
and instructions with lower labels is utilized in generating tests for
checking the decoding of registers and instructions with higher labels.

In Chapter 5, the complexity of test sequences generated by the
test generation procedures in Chapter 4 was studied. The complexity is
measured in terms of the number of instructions generated as a function of
ng- the number of instructions in the instruction repertoire. The worst
case complexity of the test sequence for the register decoding function
was shown to be O(ng); however, if all registers have label 1 (indicating

2
the highest observability) the complexity would be O(ng).
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It was shown that if the instructions have labels less than or
equal to two, the complexity of test sequences for :-he instruction decoding
and control function is O(ni). If the architecture allows instructions
with labels greater than two, the complexity increases very rapidly.

Since oy typically ranges from &4 to 32, while ny ranges from 30 to 200,
the test sequences for the instruction decoding and control function
constitute a dominant part of the test sequences of a microprocessor.

In Chapter 6 we have described our effort regarding the develop-
ment of test sequences based on the test generation orocedures in Chaptex &
for a real 8-bit microprocessor from the Hewlett-Packard Company.
Approximately 2200 single stuck-at faults were simulated. About 96% of
these faults were detected by these test sequences. The remaining faults
were associated with the power-up and initialization logic, or were
undetectable because of redundancies in the logic or they required invalid
opcodes for their detection. The results of our study were quite promising.

Thus to summarize the thesis, our approach allows us to treat
the organization and instruction set of microprocessors as parameters of
the test generation procedures. The information needed to construct the
S-graph is easily available in the user's manual. We believe our approach
is a viable and effective one towards generating test sequences for micro-

processors.

7.2. Suggested Future Research

The S-graph of the microprocessor is capable of modeling most of
the architectural features observed with current microprocessors. However,

it cannot model some of the features observed in the new, powerful 16-bit

microprocessors. For example, instructions exchanging data among two




register files cannot be adequately modeled. 1In order to under-

stand the effects of these architectural features on test generation,
further research needs to be done to model these architectural features f
using the S-graph or some other similar technique.

Fault model for the instruction decoding and control function
considers only '"'gross'" faults f(Ij/®), f(Ij/Ik), and f(Ij/Ij+ik). Our
case study regarding the test generation for the Hewlett-Packard micro-
processor and the subsequent evaluation of the fault coverage showed that
this fault model was adequate to account for all single stuck-at faults
in the instruction decoding and control functiom of this particular micro-
processor. We do not know how adequate the fault model would be for other
microprocessors, particularly the new 16~bit microprocessors. (Some of
them have an on-chip microprogrammed control unit.) Further research needs
to be directed towards evaluating the necessity of modeling other faults
such as the ones that give rise to partial execution of an instruction,
or a change in the sequence of data flow involved in an instruction.
Furthermore, if the evaluation study points to the necessity of the improved
fault models, the next problem will be to describe the effects of these
faults at the level of the S-graph and then develop test generation proce-
dures to detect these faults.

Another important area of future research is to study the appli-
cability of the test sequences generated by the procedures of Chapter 4 in
a testing environment where the sophisticated tester required by our
approach cannot be used. For example, in field testing, the extermnal

tester must be very simple and most of the testing tasks (such as comparing

the output result on a bus with the expected result) must themselves be
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carried out by the microprocessor under test. Future research must be
directed towards investigating the modificatioms to the proposed test
generation procedures to make them suitable for field testing, or for the
so-called "self-testing' operations. Self-testing involves some hardcore,
i.e., that part of hardware which must be assumed to be fault free.
Therefore identification of the hardcore and its testing by an externmal
tester are two major problems that need to be solved for any self-testing
scheme.

Finally, future research needs to be directed towards the
challenging problem of design for testability. Architectural features
which enhance testability should be investigated. Allowing registers and
instructions with as low labels as possible (imparting high observability)
is obviously a step in the right direction. Such a solution might degrade
the performance of the microprocessor in yet unknown way. The underlying

testability-performance trade-offs should also be investigated.
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APPENDIX

We consider the behavior of a decoder (for a given valid input)

et

under a single stuck-at fault. The decoder is assumed to be realized
without any reconvergent fanout. This assumption is quite reasomnable as
a decoder has n inputs and as many as 2 outputs. No other restriction
is imposed on its implementation.

Figure A.l1 shows a schematic diagram of a decoder which has k
primary inputs labeled Xys Xps o ees Xy

k s .
Cis Cps wovs S where n < 27. The set of valid input vectors is a subset

and n primary outputs labeled

of the set of all possible input vectors. Therefore, the set of valid
input vectors contains n = Zk input vectors. The set of valid input
vectors which activate output c; is denoted by X(ci). Since for any
given valid input vector one and only one output is activated [X(ci)l =1
and X(c;) N X(cj) =@ if and only if c, # ¢y

Figure A.l also shows the last level of gates just before the
primary outputs. In order to maintain complete generélity, each gate
is shown as a module and not as a specific gate (such as AND, OR, NOR or
NAND). These gates are labeled with the corresponding outputs. <
becomes active if and only if all inputs to gate c; are active. (For AND
and NAND gates, logic 1l is an active input; while for OR and NOR gates,
logic 0 is an active input.) If the output of gate Ci is active, the
output of gate c:j must be inactive (ci # cj). Thus when ¢, is active,
at least one input of gate cj must remain inactive to ensure that cj is

i
inactive. We can partition the inputs of gate cj into two sets, A(cj)

and I(c?), where A(c;) is the set of inputs of gate cj which are active
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Figure A.l1. Schematic diagram of a decoder il'ustrating the
notation used in the proof of Theorem 3.1.
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when output c; is active, and I(c?) is the set of inputs of gate cj which
are inactive when output ¢y is active. Note that I(c?) # 2. We now
prove Theorem 3.1 which is restated below for easy reference.

Theorem 3.1: If a decoder is realized without any reconvergent
fanout then under a single stuck-at fault its behavior can be formulated
independent of its implementation detail as follows: for a given valid
input to the decoder, instead of, or in addition to the expected output
some other output is activated, or no output is activated.
* Proof: We prove the theorem by contradiction. Assume that
under a single stuck-at fault, the input vector X(ci) activates outputs
cj and L in addition to, or instead of c;- Therefore under the fault,
both x(ch.) and 1(c}) become active in addition to A(cj.) and A(c]). Since
there is only a single fault, the inputs in I(c?) and I(ci) can be traced
back to a line where the fault occurs. This line is denoted by £ in
Figure A.l1. (This could be a primary input line.) Since the decoder does
not have any reconvergent fanout, II(cﬁ)[ = 1 and lI(ci)l = 1; moreover,
the primary inputs which can be traced back from the inputs in A(c?) are
different from those which can be traced back from line £. Similarly, the
primary inputs which can be traced back from the inputs in A(c;) are
different from those which can be traced back from line f£f. Thus, if there
is no fault in the decoder, the logic value on line f can be controlled by
changing the logic values only on those primary inputs which can be traced
back from line £, without changing the logic values om inputs in A(c?) and
A(c;)-

We now consider the following 'thought experiment'" under the

fault free conditiomn.

e
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1. Apply X(ci). This will also activate the inputs in A(c;) and
i
A(ck).
2. If necessary, change the logic value on those primary inputs
which can be traced back from line £ in order to activate line f, without
making the inputs in A(C§) or A(C;) inactive. b

This will make both I(Cﬁ) and I(Ci) active which means that both

cj and ¢y will become active. Thus even though there is no fault in the

decoder, some valid input vector activates both cj and ¢, , which is

x?
impossible. O
Theorem A.1l: 1If a decoder is realized without any reconvergent
fanout then under a single stuck-at fault if X(ci) activates cj instead of,
or in additiom to S X(cj) will activate only cj.
Proof: We prove this theorem also by contradiction.

1) First assume that under a single stuck-at fault x(ci) activates
cj, instead of, or in addition to ci, and X(cj) does not activate any
output. Therefore the inputs in I(cj) can be traced back to a line where
theé fault occurs. This line is denoted by f in Figure A.2. Since the
decoder does not have any reconvergent fanout, ]I(c?)\ = 1, and no input
in A(c?) can be traced back to line f. When X(cj) is applied no output
is activated; in particular cj is not activated. This can happen only if
some input in A(ci) can be traced back to another fault which keeps that
input permanently inactive; but this would violate the assumption of a
single stuck-at fault.

2) Now assume that under a single stuck-at fault X(ci) activates cj,

instead of, or in additiomn to ;o and x(cj) activates c instead of, or

k)
in addition to cj. Therefore, the inputs in I(c?) and I(ci) can be

—
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Figure A.2. Schematic diagram of a decoder illustrating the
notation used in the first part of the proof of
Theorem A.1l.
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traced back to a line where the fault occurs. This line is denoted by £
in Figure A.3. Since the decoder does not have any reconvergent fanout,
’I(c§)| = 1 and lI(ci)| = 1; moreover, the primary inputs which can be
traced back from the inputs in A(c?) are different from those which can
be traced back from line f£f. Similarly, the primary inputs which can be
traced back from the inputs in A(Ci) are different from those which can
traced back from line f. Thus the logic value on line f can be controlled
by changing the logic values only on those primary inputs which can be
traced back from line £, without changing the logic values on inputs in
A(c?) and A(ci).

We now consider the following ''thought experiment' when there is
a fault on line f as shown in Figure A.3.

1. Apply X(ci). This will also activate the inputs in A(c?). Due to
the fault on line £, the input in I(c?) also becomes active, consequently
activating cj. At this time some input(s) in A(ci) must be inactive
because e is not active.

2. Change the logic value on those primary inputs which can be
traced back from line f in order to activate line f (for this X(cj) needs
to be applied), without changing the logic values in A(c?) and A(ci), i.e.,
the inputs in A(c?) are active and some input(s) in A(ci) are inactive.

Thus we get in a situation where X(cj) does not activate ¢

k

even though fault on line f exists, contradicting our assumption. O

Corollarly A.l: If a decoder is realized without any reconver-

gent fanout then under a single stuck-at fault if x(cj) does not

activate any output, or activates ¢ instead of, or in addition to cj,

k’

no X(cq) will activate cj, instead of, or in addition to cq, for cq # cj.
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Figure A.3. Schematic diagram of a decoder illustrating the
notation used in the second part of the proof of
Theorem A.1.
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Proof: Follows directly from Theorem A.l.

Constraints 4 and 5 given in Section 3.2 are consistent with

Theorem A.1l and Corollary A.l.
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